Jordan Journal of Civil Engineering

Hyperbolic P-Y Criterion for Cohesive Soils

Authors:

Y. Liang Robert; S. Shatnawi Ehab; Nusairat Jamal;

Abstract:

Drilled shafts have been frequently used as a foundation to support lateral loads. The p-y method of analysis has been widely used for predicting the behavior of laterally loaded drilled shafts. The existing p-y criteria for cohesive soils are divided into soft or stiff clays, on the basis of a limited number of lateral load test results. Currently, there is no p-y criterion developed for cohesive intermediate geomaterial. In this paper, a hyperbolic equation for p-y curve is presented for cohesive soils and intermediate geomaterials. Based on 3-D FEM simulation results, a new empirical equation is presented for calculating the initial tangent to p-y curve. The proposed hyperbolic p-y criterion is verified by using the results of six full-scale lateral load tests on fully instrumented drilled shafts with diameters ranging from 0.76 m to 1.83 m in the geo-medium ranging from soft clays to intermediate geomaterial. The proposed hyperbolic p-y criterion is shown to be capable of predicting the loaddeflection and bending moments of the laterally loaded shafts for the six cases studied in this paper.

Keywords:

p-y criterion, Cohesive soils; Intermediate geomaterial, Lateral loads, Drilled shaft.