
Jordan Journal of Civil Engineering, Volume 11, No. 1, 2017 

- 132 - ©  2017 JUST. All Rights Reserved.

 

Prediction of Side Weir Discharge Coefficient by 

Genetic Programming Technique 
 

Abbas Parsaie 1) and Amir Hamzeh Haghiabi 2) 
 

1) Ph.D. Candidate of Hydrostructures, Department of Water Engineering, Lorestan University, Khorram Abad, Iran. 
E-Mail: Abbas_Parsaie@yahoo.com 

2) Associate Professor, Department of Water Engineering, Lorestan University, Khorramabad, Iran. 
E-Mail: haghiabi@yahoo.com 

 

ABSTRACT 
Side weir has many possible uses in hydraulic engineering and has also been investigated as an important 
structure in hydrosystems. In this paper, the genetic programing technique was used to predict side weir 
discharge coefficient. The main parameters which are efficacious in the side weir discharge coefficient are: 

Froude number (Fr), ratio of side weir height to total upstream head ), ratio of side weir length to total 

upstream head ) and ratio of side weir length to channel width ( ). Principal component analysis indicates 

that the most important parameters are: Fr1 and . The results show that the most accurate empirical formula 

is the Emiroglu formula with error indices (R2 = 0.64 and RSME=0.1). The performance of GP was 
compared to the empirical formulae proposed to calculate Cdsw. The results of the GP model indicate that the 
accuracy of the GP model with error indices (R2 = 0.95 and RSME=0.09) is suitable. At the end, a formula is 
proposed to calculate Cdsw based on the GP approach. 

KEYWORDS: Hydraulic structures,Weir,  GP, Discharge coefficient, Principal component analysis. 

 
INTRODUCTION 

 

Modeling of hydraulic structures is the main part of 

hydraulic engineering research (Ettema, 2000). 

Modeling of hydraulic structures has been usually 

conducted by physical laboratory model creation and 

numerical simulation. Investigators, by studying the 

physical hydraulic models, tried to define the various 

hydraulic characteristics of hydraulic structures. 

Results of the experimental studies are usually declared 

by an empirical formula or by presenting a graph. 

Empirical formulae are derived by classical regression. 

Studies on side weir hydraulic properties were first 

conducted by experimental approaches. The aims of 

these studies were defining the water surface profile 

along the side weir at sub-critical and super-critical 

flow conditions and defining the side weir discharge 

coefficient to improve the efficiency of side weir by 

proposing various shapes of the crest of side weir (El-

Khashab and Smith, 1976; Uyumaz and Muslu, 1985; 

Hager, 1987; Uyumaz and Smith, 1991; Cheong, 1991; 

Swamee et al., 1994b; Swamee et al., 1994a; Singh et 

al., 1994; Swamee et al., 1994c; Jalili and Borghei, 

1996; Borghei et al., 1999; Ghodsian, 2003; Coşar and 

Agaccioglu, 2004; Durga Rao and Pillai, 2008; Borghei 

and Parvaneh, 2011; Kaya et al., 2011; Emiroglu et al., 

2011a; Emiroglu and Kaya, 2011; Rahimpour et al., 

2011; Haddadi and Rahimpour, 2012; Vatankhah, 

2012, 2013a; Vatankhah, 2013b). Figure (1) shows a 

diagram scheme of side weir at sub-critical flow 

condition. 
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Figure (1): sketch of side weir at sub-critical flow condition 

 
In Figure (1), L is the side weir length, B(b) is the 

channel width, P is the weir height, 1h is the upstream 

flow depth, 2h is the downstream flow depth, Q0 is the 

upstream discharge, Qs is the discharge passing through 

the side weir and Q2 is the downstream discharge. 

Researchers who conducted experimental studies on 

side weir hydraulics tried to explain the effect of 

influential parameters, such as Froude number, weir 

length, flow angle, crest shape, among others, on the 

side weir discharge coefficient. Because of the high 

cost of physical modeling and laboratory equipment, 

investigators used numerical approaches for simulating 

the performance of hydraulic structures. In the field of 

numerical simulation, the governing hydraulic 

equations were solved by numerical approaches. 

Another way of numerical simulation is using the 

computational fluid dynamics (CFD) approach. 

Numerical simulation shows the flow pattern, pressure 

and velocity distribution (Parsaie and Haghiabi, 2014; 

Aydin, 2012; Aydin and Emiroglu, 2013). Recently, by 

advancing the artificial intelligence techniques, such as 

neural network (ANN) models in water engineering, 

predicting the hydraulic phenomena has been 

conducted with more accuracy. Developing ANN 

models is based on the data set. This means that the 

hydraulic characteristics of the phenomena should be 

measured in advance. In the field of ANN, the 

Adaptive Neuro Fuzzy Inference System (ANFIS) was 

used by Emiroglu and Kisi (2013) and the Multi-layer 

Perceptron (MLP) neural network was implemented by  

Kisi et al. (2012), Bilhan et al. (2010), Bilhan et al. 

(2011) and Emiroglu et al. (2011b). The results of all 

the ANN studies on the side weir indicate that the 

accuracy of ANN models is much higher than that of 

empirical formulae. The ANN model and the ANFIS 

model present a network instead of a formula, so the 

researcher hasn’t more detailed information on the 

processes which are carried out inside the ANN model. 

By advancing the neural network models, today 

another type of neural networks is present which gives 

a formula in addition to the network. In this paper, the 

genetic programing technique is used to predict the 

discharge coefficient of side weir.   

 

MATERIALS AND METHODS 

Discharge coefficient of side weir as stated in the 
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literature is a function of hydraulic and geometric 

characteristics. The main parameters which have 

influence on side weir are given in Eq. (1). 

 
                                                                                    (1) 

 

By using dimensional analysis techniques, such as 

Buckingham  theory, researchers reduce the number 

of experiments. The dimensionless parameters derived 

from the dimensional analysis process are given in Eq. 

(2). 
 
                                                                                    (2) 

 

where 1Fr  is the Froude number. Equation (2) is a 

basic formula for developing experimental studies and 

artificial intelligent techniques on side weir hydraulics. 

A summary of the most famous empirical formulae is 

given in Table (1). As mentioned in the literature, 

developing ANN models is based on the data set. So, 

for predicting swCd  by genetic programing techniques, 

about 477 data sets related to Eq. (2) were published in 

credible journals and the range of them is given in 

Table (2). Some of the resources that were used for 

data derivation are given as follows: (Emiroglu et al., 

2011a; Singh et al., 1994; Borghei et al., 1999; Bagheri 

et al., 2014; Subramanya and Awasthy, 1972). 

Table 1. Some empirical formulae to calculate the side weir discharge coefficient 

Row Author(s) Equation  

1 Nandesamoorthy and Thomson  (1972)   

2 Subramanya and Awasthy (1972)   

3 Yu-Tech (1972)  

4 Ranga Raju et al. (1979)  

5 Hager (1987)   

6 Cheong (1991)  

7 Singh et al. (1994)   

8 Jalili and Borghei  (1996)   

9 Borghei et al. 1(999)   

10 Emiroglu et al. (2011)   
 

Table 2. Range of collected data related to the side weir discharge coefficient 

Data range Fr1 P/h1 L/b L/h1 Cd 

Min. 0.09 0.03 0.21 0.19 0.09 
Max. 0.84 2.28 3.00 10.71 1.75 
Avg. 0.43 0.76 1.13 3.87 0.50 
St. dev. 0.18 0.43 0.85 3.06 0.17 
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Genetic Programing Overview 

Genetic programing (GP) technique is a machine 

learning approach which is used for modeling input-

output complex non-linear systems that are based on 

the data set. Developing GP is based on the genetic 

algorithm (GA) concept. This means that the concepts 

which are used in GA are repeated in GP, such as 

genes, multi-genes, mutation… and so on. GP is also 

used to build an empirical formula from the input-

output data set. It is also often known as symbolic 

regression. GP creates the formula that consists of 

input variables and several mathematical operators 

such as (+,−, / and *) and functions such as (ex, x, sin, 

cos, tan, lg, sqrt, ln, power). GP carries out this process 

by randomly generating a population of computer 

programs (represented by tree structures) and then 

mutating and crossing over the best performing trees to 

create a new population. This process is continued until 

the formula with most suitable accuracy is achieved. 

Unlike classical regression analysis by which the 

designer defines the structure of the empirical formula, 

GP automatically generates both the structure and the 

parameters of the empirical formula. An individual 

multi-gene is comprised of one or more genes and is 

named a GP tree. To improve the performance of 

fitness (e.g. to reduce a model’s sum of squared errors 

on a data set), the genes are obtained incrementally. 

The final formula may be a weighted linear or non-

linear combination of all genes. The optimal weights 

for the genes are automatically obtained by using the 

ordinary least squares to regress the genes against the 

output data. Figure (2) shows a pseudo-formula 

obtained by a GP technique. In this formula, y is the 

output, while the inputs are x1, x2 and x3 (Brameier and 

Banzhaf, 2007). 

 

Figure (2): Sketch of formula generation by GP technique 
 

Genetic Programing Development 

Preparation of a formula based on the genetic 

programing technique as similar to other machine 

learning techniques, such as all neural network models, 

is based on the data set. This means that to present a 

suitable formula for modeling an event, the effective 

parameters on the event should be previously defined 

and measured. Modeling the side weir discharge 

coefficient based on the GP technique needs to define 

and measure the influential parameters. For this 

purpose, the dimensionless parameters which are 

obtained in the dimensional analysis section (Eq.2) are 

used. The coefficient values which appear in the gene 

process are defined by using least squares operation in 

Table (2) data set.  

 

RESULTS AND DISCUSSION 

 

The performance of empirical formulae was 

assessed by conducting a compression on the measured 

data the range of which is given in Table (2) and the 

empirical formula results. For this purpose, some error 
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Figure (5): Performance of GP model during training and testing stages 

 

 
Figure (6): GP model results versus actual (measured) data during training and testing stages 

 

Table 5. Setting of GP parameters during the development stage 

Description of parameter Setting of parameter 

Function set exp, cos, sin, minus, plus, divide, power 

Population size 100 

Maximum depth of trees 5 

Generation number 100 
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CONCLUSION 

 

In this paper, predicting the side weir discharge 

coefficient ( swCd ) by an empirical formula and genetic 

programing (GP) technique was considered. Assessing 

the results of empirical formulae shows that the 

Emiroglu formula is the most accurate one among the 

empirical formulae. The principal component analysis 

(PCA) was implemented to derive the most important 

parameters which influence swCd . The results of PCA 

indicated that the upstream Froude number and ratio of 

weir height to the total upstream head are the most 

important parameters. Modeling and predicting swCd  

by GP was also considered. The performance of GP 

shows that the ability of GP for modeling swCd is 

suitable, where the accuracy of the GP model was 

much higher than that of empirical formulae. 
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