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ARTICLE INFO ABSTRACT

Article History: The load-bearing capacity analysis of pre-stressed concrete in bridge engineering is a
Received: 24/6/2025 core technology for structural safety evaluation. It has long faced challenges in
Accepted: 21/8/2025 insufficient detection accuracy under complex stress environments and low efficiency

in multi-source data fusion. Traditional analysis methods rely on a single mechanical
model or empirical experience, making it difficult to accurately capture the nonlinear
relationship between crack development and load-bearing capacity degradation.
Therefore, this study proposes a prestressed concrete load-bearing capacity analysis
model based on a dual-threshold edge detection algorithm. Experimental results show
that the accuracy of the improved edge detection algorithm reaches a maximum of
89.5% after iteration, with the misdetection rate of bridge cracks under various noise
influences being as high as 9%. Evaluation of the fusion analysis model shows that the
Mean Square Error (MSE) of its load-bearing capacity is only 0.015 kN-m?, and the
coefficient of determination R? is 0.98. These results indicate that the proposed
prestressed concrete load-bearing capacity analysis model can effectively improve the
prediction accuracy of load-bearing capacity under complex stress environments and
accurately capture the nonlinear relationship between crack development and load-
bearing capacity degradation. Compared with existing research, the core contributions
of this study are reflected in three aspects: 1. A collaborative analysis framework for
crack characteristics and section loss was constructed, quantifying the coupling
influence mechanism of the two on bearing capacity and breaking through the
limitations of traditional single-factor analysis; 2. A prestressed concrete bearing
capacity analysis model was proposed. Through algorithms, the core characteristics of
crack-section loss were precisely screened, and the problem of dynamic bearing
capacity prediction under small samples was solved, filling the technical gap of
nonlinear mapping in complex stress environments; 3. The experiment verified the
quantitative correlation between crack size and steel bar damage (for every 0.1mm
increase in crack width, the steel bar corrosion rate increases by approximately 15%),
providing an operational quantitative method for inferring internal structural damage
from surface cracks. This study provides a new technical approach for bridge structural
safety assessment and contributes to the development of intelligent monitoring and
full-life-cycle maintenance technologies for prestressed concrete structures.
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INTRODUCTION

In recent years, the vigorous development of bridge
engineering leads to the widespread application of
prestressed concrete structures in various types of
bridges due to their excellent bearing performance
(Farneti et al., 2023). However, the impact of bridge
cracks and the resulting cross-sectional loss on the
bearing capacity of prestressed concrete becomes
increasingly significant, making bridge cracks a key
research topic in the field of bridge engineering (Ni et
al., 2025). Accurately identifying cracks, extracting
features, and monitoring bearing capacity are crucial to
ensuring bridge safety and durability (Tonelli et al.,
2023). Traditional detection methods have insufficient
accuracy and poor adaptability in complex crack image
recognition and feature extraction, making it difficult to
meet the requirements of modern bridge engineering.
An efficient and accurate processing solution is urgently
needed. Therefore, this study proposes a new prestressed
concrete bearing capacity analysis model, which takes
into account crack recognition accuracy, feature
extraction efficiency, and dynamic monitoring
capabilities. In this model, the Canny Edge Detection
Algorithm (Canny), improved by Otsu, combines the
advantages of threshold segmentation and edge
detection (Salunke et al., 2023), and the Particle Swarm
Optimization (PSO) algorithm effectively extracts crack
features and improves analysis accuracy (Demir et al.,
2023). At the same time, the model also combines the
Generative Adversarial Network (GAN) with Long
Short-Term Memory (LSTM) to achieve dynamic time
series monitoring of the bearing capacity of prestressed
concrete. It is expected that this model can break through
the limitations of traditional single detection and
promote the development of bridge structure health
monitoring towards precision and intelligence. This
study innovatively integrates the neural network and the
detection algorithm architecture, breaking the
inefficiency of traditional detection, and has important
theoretical significance and engineering application
value for improving the safety and durability of bridge
engineering.

RELATED WORKS

The Otsu-Canny algorithm is an image edge
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detection method that combines Otsu threshold
segmentation and Canny edge detection. It is often used
to extract target edges in images and is widely used in
many fields. Scientists have conducted extensive
discussions on this algorithm. For example, Ramadhan
proposed an edge detection method using Otsu threshold
and Canny edge to address the problem that low-
resolution images often suffer from quality degradation
and important details are lost due to noise and blur.
Experimental results showed that this method had a
lower loss value and was therefore recommended as a
more effective method for low-resolution image
processing (Ramadhan et al., 2025). Zhang et al.
developed an adaptive segmentation approach that
integrates the Otsu method with a dynamic Canny edge
detection technique to mitigate the influence of external
disturbances on  sea-sky line identification.
Experimental outcomes demonstrated that the proposed
method maintained strong accuracy and robustness in
handling images captured in complex maritime
environments (Zhang et al., 2024). Xiong et al. proposed
an improved Canny edge detection algorithm to solve
the problems of low efficiency, susceptibility to human
interference, and low measurement accuracy of
traditional manual sorting and size measurement
methods in the production process of photosynthetic
devices. Experimental results showed that the algorithm
achieved pixel center point positioning error compliance
with the average execution time of 143.34ms (Xiong et
al., 2025). Choi and Ha introduced a method for
automatically selecting three suitable thresholds in the
Canny edge detection algorithm by employing the actor-
critic algorithm to address the thresholding issue.
Experimental results across various datasets confirmed
the practicality and effectiveness of the proposed
algorithm (Choi & Ha, 2023). In response to the lack of
early prevention and detection of breast tumor cases,
Triwibowo et al. suggested applying the Canny edge
detection algorithm to process breast X-ray images
utilizing the Support Vector Machine method for
classifying the types. The detection results showed that
the classification accuracy was 95%. From the results
obtained, it can be seen that the application system was
very suitable for the early identification of breast tumors
(Triwibowo et al., 2023).

With the large-scale development of infrastructure
construction and the widespread application of
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prestressed concrete materials, new theoretical models
and analysis methods have been continuously proposed
and applied in the field of prestressed concrete bearing
capacity research. Engineers have carried out extensive
studies in this area. For instance, Zhou et al. performed
multi-stage variable amplitude fatigue tests on three
groups of prestressed concrete beams with different
sizes to investigate the fatigue damage mechanism of
prestressed concrete beams under fatigue loads. The
results indicated that the increase in residual bearing
capacity of prestressed concrete beams decreased as the
cross-sectional size increased (Zhou et al., 2025). In
order to explore whether spun prestressed concrete piles
could replace foundation solutions, Farzana et al. used
various analysis methods and static pile load tests to
estimate the wvertical bearing capacity of spun
prestressed concrete piles in the Jolshiri area of Dhaka,
Bangladesh. The experiment showed that the prestressed
piles had good substitutability (Farzana et al. 2024). Hu
et al. built and tested eight beams under cyclic loading
to evaluate the hysteresis performance of aramid fiber
reinforced polymer prestressed concrete beams. The test
variables included the type of prestressed tendons and
the ratio of internal to external tendons. The experiment
showed that the damage of all beams was mainly
concrete crushing and non-prestressed steel bars
ruptured in pure bending sections (Hu et al., 2024). Li et
al. (2024) introduced a novel approach utilizing
distributed acoustic sensing technology to monitor and
detect wire breaks in prestressed concrete tubes, aiming
to assess the condition of these tubes. The results
showed that this method could quickly and effectively
capture wire breaks and noise in various environments
(Li et al., 2024). Gleich and Maurer proposed a shear
analysis method to perform structural evaluation on
existing old prestressed concrete bridges. Experimental
results showed that the proposed concrete shear analysis
method could more realistically determine the shear
bearing capacity of prestressed beams compared to the
truss model under the current standardized state (Gleich
& Maurer, 2023).

To sum up, existing research has made certain
progress in the analysis of the bearing capacity of
prestressed concrete. However, there are three
significant limitations in the current research: 1. Focus
is more on the influence of a single factor (such as only
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cracks or only section loss) on the bearing capacity,
while ignoring the coupling effect of the two (for
example, crack propagation accelerates the corrosion of
steel bars, and corrosion in turn aggravates the
development of cracks). 2. The correlation between
cracks and steel bar damage is mostly described
qualitatively, lacking quantitative models, making it
difficult to infer the degree of internal steel bar section
loss from the surface crack characteristics. 3. Traditional
models have insufficient generalization ability in small
sample sizes and complex noise environments, making
it difficult to meet the dynamic monitoring requirements
of actual bridges. The research integrates multiple
algorithms based on actual needs to solve the above
problems. The proposed prestressed concrete bearing
capacity analysis model that combines neural networks
and detection algorithms has good performance. It is
expected that this model can promote the development
of bridge structure health monitoring towards precision
and intelligence.

Design of Prestressed Concrete Bearing Capacity
Based on Crack Features and Section Loss
Bridge Crack Identification and Feature Parameter
Extraction Method Design

With the deep integration of intelligent monitoring
technology for bridge engineering and health
management of prestressed concrete structures, the need
to accurately identify the impact of cracks on bearing
capacity is becoming increasingly urgent (Usman &
Abdullah, 2023). However, traditional detection
methods are insufficient in capturing crack features and
are easily disturbed by environmental noise, making it
difficult to balance detection sensitivity and
computational efficiency (Alherbawi et al., 2023; Fan et
al., 2024). In order to address the problems of nonlinear
coupling of crack stress and low efficiency of multi-
scale crack feature recognition in prestressed concrete
structures of bridges, the Canny detection algorithm is
proposed. The algorithm dynamically optimizes edge
responses by simulating the detection mechanism of
biological visual edge perception, so that the crack
identification process focuses more on the characteristic
crack extension path caused by stress concentration. The
structure of the Canny detection algorithm is shown in
Figure 1.
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Figure 1. Structure diagram of Canny detection algorithm

As shown in Figure 1, the Canny detection algorithm
first inputs the image and parameters, and then performs
Gaussian filtering to reduce noise. Then, the horizontal
and vertical gradients of the image are obtained, and the
gradient amplitude and direction are calculated. Then,
the non-maximum suppression step is entered, and then
double threshold selection is performed, and edge
connection is  performed through  hysteresis
thresholding. The above processing flow is repeated
until all pixels are detected, and finally, the detected
image is output. Gaussian filtering is used to smooth the
image and remove noise. The definition of the two-
dimensional Gaussian function is shown in Equation (1).

Xy?

e 20’2

H(x,y)= 1)

2
2no

In Equation (1), o represents the standard deviation
of the Gaussian kernel, controlling the smoothing
degree, and x, y represent the center coordinates of the
Gaussian function along the x and y axes. Next, in the
gradient magnitude and direction calculation step, the
Sobel operator is employed to compute the gradient in
both the horizontal and vertical directions of the image.
The horizontal and vertical Sobel operators are
represented in Equation (2).
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In Equation (2), G, and G, represent the Sobel
operators in the horizontal and vertical directions,
respectively, G is the gradient amplitude. Using these
two equations, the gradient magnitude and direction are
calculated, as shown in Equation (3).

G
G =[G} +G}0 =arctan (G—yj

X

)

In Equation (3), & represents the direction of the
gradient. Although the Canny edge detection algorithm
plays a role in processing bridge crack images, it still has
limitations, such as relying on empirical double
threshold selection, insufficient adaptability to complex
images, and sensitivity to noise, making it difficult to
suppress the irregular surface texture of concrete and
monitoring noise interference (Syahifitri, 2023; Liu et
al., 2024). Therefore, the introduction of the gradient-
based dual-threshold Otsu algorithm is proposed, which
resolves these issues through adaptive threshold
computation based on gradient information, global pixel
statistical feature analysis, and multi-scale edge fusion.
The Otsu-Canny edge detection algorithm flow,
combining Canny and Otsu, is shown in Figure 2.
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Figure 2. Otsu-Canny edge detection algorithm workflow diagram

In Figure 2, the Otsu-Canny algorithm first performs
image preprocessing. Then, the image gradient amplitude
is calculated, and the gradient double threshold Otsu
algorithm is used to adaptively obtain the optimal double
threshold.  Then, non-maximum  suppression is
implemented to refine the edge, and the strong and weak
edges are distinguished by hysteresis threshold processing
and irrelevant pixels are excluded to obtain high and low
threshold edge images. Finally, isolated noise points in the
low threshold edge image are removed to output an
accurate edge image. The Otsu algorithm is an image
binarization algorithm based on maximizing the inter-class
variance. The total number of pixels in the image is usually
related to the grayscale, as shown in Equation (4).

N=> N, 4

In Equation (4), the number of pixels with grayscale
value i is N;, and L represents the number of grayscale
levels. The probability of grayscale value i is the ratio of
the total number of pixels to the number of pixels with
grayscale value i. The image is subsequently segmented
using the threshold, and the process for computing the
foreground probability is outlined in Equation (5).
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In Equation (5), t represents the threshold, and
p; represents the probability of grayscale value i. When
processing an image with a lower threshold, both strong
and weak edges of the target object will be detected,
making the true edges appear relatively continuous. The
isolated pixel points that appear are more likely to
belong to discrete noise interference, and the between-
class variance g is calculated as shown in Equation (6)

g=a, (,Uo _IU)Z +w1(ﬂ1 _lu)z = Oy, (/lo _!‘1)2 (6)

In Equation (6), w, and w, represent the foreground
and background probabilities, respectively, while u, and
U, refer to the average gray level, and u represents the
total average gray level of the image. Otsu-Canny
searches through all possible thresholds to find the one
that maximizes g, where the foreground and background
differences are greatest, resulting in the best
segmentation effect. After identifying bridge cracks, the
study proposes using PSO for feature extraction to
quantify the impact of cracks on the prestressed concrete
bearing capacity of the bridge. In summary, the flow of
the bridge crack recognition and feature parameter
extraction method is shown in Figure 3.
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Figure 3. Bridge crack identification and characteristic parameter extraction method flow
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As shown in Figure 3, the method first inputs the
bridge image, then preprocesses it. Next, the PSO
algorithm further optimizes the Otsu-Canny threshold,
and the optimized algorithm performs edge detection on
the image. After morphological processing and
connected region labeling, the PSO algorithm is used to
extract crack features, ultimately generating a visualized
crack area and detection report.

Prestressed Concrete Bearing Capacity Analysis
Model Construction

As mentioned earlier, crack characteristics and
section loss can affect the load-bearing capacity of
prestressed concrete through a synergistic effect, but the
specific action path (how to aggravate section damage
through crack development and how to infer the
degradation of load-bearing capacity through section
loss) remains unclear. To accurately construct a carrying
capacity analysis model, it is necessary to first clarify
the intrinsic correlation mechanism among the three.
The core logic can be summarized as cascading
influence and quantitative feedback :1. Crack — Section
loss: When the crack width exceeds 0.2mm, external
moisture and chloride ions invade the surface of the
reinforcing bar along the crack, accelerating
electrochemical corrosion. As the crack width increases,
the corrosion rate of the reinforcing bars rises, and the
cross-sectional loss rate of the reinforcing bars
(corrosion area/original area) increases after 6 months.
If surface cracks in concrete are accompanied by forking
(the number of forking >2), this will lead to an
expansion of the local spalling area, further weakening

@

Crack detection

Measurement of
crack parameters

___________

L2,

jm—————————n

Evaluate the degree
of section loss

../o':n[l
Data collectlon

Consult relevant

the effective force-bearing area of the cross-section. 2.
Section loss — Decreased bearing capacity: The rate of
section loss of reinforcing bars increases, the efficiency
of prestress transmission decreases, and the ultimate
bearing capacity of the beam body drops. When the area
of concrete section spalling exceeds 10%, the height of
the compression zone decreases and the flexural bearing
capacity declines. The interrelationship chain among the
three can be summarized as follows: crack propagation
— intensified cross-sectional damage — reduced
effective load-bearing section — degradation of bearing
capacity. Therefore, crack characteristics and section
loss will interact with each other and jointly reduce the
bearing capacity of prestressed concrete structures.
Therefore, after completing the identification and
feature extraction of bridge cracks, the decrease in the
compressive capacity of components caused by the
section loss in the compression zone and the increased
risk of shear failure caused by the shear section loss
should also be considered. In order to accurately
evaluate the current safety performance of bridge
structures, provide the targeted technical basis for
maintenance and reinforcement, reveal the evolution
law of prestressed concrete structure performance,
realize cross-scale mapping from pixel-level image
analysis to engineering mechanics response, and solve
the core problem of the influence of cracks and section
loss on the bearing capacity of concrete; the study
further explores the correlation between bridge cracks,
section loss and prestressed concrete bearing capacity.
The analysis roadmap is shown in Figure 4.
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Crack - Mechanical
parameter mapping

Simulation
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analysis parameters
-—
Engineering Application-oriented Correlation
modeling

Figure 4. Correlation exploration and analysis roadmap
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As illustrated in Figure 4, the approach outlined in and correlation modeling is carried out, and finally, the
the study begins by reviewing relevant materials to engineering application is realized, completing the
establish a theoretical foundation for the research. Then, transformation from research to engineering practice.
data collection is carried out, and crack detection and The bearing capacity detection of prestressed concrete is
crack parameter measurement are carried out based on a key technology in the field of bridge engineering, but
the data collected. Then, the degree of section loss is the traditional method relies on empirical formulae, and
evaluated by detecting concrete spalling and steel bar there are problems, such as high cost and low efficiency.
corrosion rate. After comprehensively considering the Therefore, the study introduces LSTM combined with
synergistic effect of the two, the obtained data is GAN, processes time series data through memory units,
corrected with the bearing capacity analysis parameters, captures long-term dependencies, and solves the
and then, the mechanical parameters of cracks and problem of insufficient detection data, as shown in
section loss are mapped and simulated for verification, Figure 5.

Dataset |——>| Feature extraction [— Quantificationof non- | ____ | Normalization
numerical features

GAN algorithm data
augmentation

J 2 E}n
¢ Classification model LSTM %

Figure 5. The bearing capacity analysis process combining GAN and LSTM

As shown in Figure 5, the study integrates various capacity  assessment and  maintenance.  The
discrete monitoring data into a continuous data stream normalization operation process is shown in Equation
for bridge-related monitoring data, then extracts the key (7).
features that affect the bearing capacity of bridge X—X_.
prestressed concrete, and then normalizes the data to X'=——mn_ (7
eliminate the dimension effect. Subsequently, the GAN Xenax ~ Xinin
algorithm is introduced to enhance the normalized data,
generate more diverse samples to expand the dataset, In Equation (7), x represents the raw data, and x4
and then form a test set. The processed test set is input and x,,,;, are the maximum and minimum values of the
into the LSTM model, and the bridge data characteristics data, respectively. This step is used for preprocessing
are analyzed by using the LSTM's learning ability for the bridge monitoring data to improve the model's
time series data. Finally, the Softmax function is used training performance. In GAN, the generator G and the
for classification to determine whether the state of the discriminator D undergo adversarial training to enhance
bridge prestressed concrete structure is normal or the objective, as shown in Equation (8).

abnormal, thereby providing a basis for bridge bearing

ming MaX, E,. a0 [Iog D(x)] +E, o) [Iogl— D(G (z))] (8)

In Equation (8), x represents the raw data, z 9)
represents noise, pdata (x) represents the real data In Equation (9), z represents the input vector, K
distribution, and p(z) represents the noise distribution. represents the number of output categories, and z;
Finally, the Softmax converts the raw scores output by represents the j-th input value. Through the operation of
the LSTM into probabilities to assess the bearing the Softmax function, these raw scores are converted
capacity state of the prestressed concrete bridge. The into a probability distribution, where the value of each
Softmax operation flow is shown in Equation (9). element lies between (0,1), and the sum of all elements'

el probabilities equals 1, thus representing the probability

() =5k
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that the input sample belongs to each category. Based on
the methods for bridge crack recognition, cross-
sectional loss, and feature parameter extraction, as well
as prestressed concrete bearing capacity detection, the
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Figure 6. Specific structure diagram of OCPGL analysis model

As shown in Figure 6, OCPGL integrates multiple
technologies to achieve full-chain analysis. First, the
Otsu-Canny algorithm is used to identify and extract
crack feature parameters, and then, the PSO algorithm is
used to select core features from redundant features, and
the core features of the cracks are fused and evaluated
with the cross-sectional loss. Then, the GAN algorithm
is used to generate multiple enhanced data to cover
extreme working conditions and solve the small sample
problem. Finally, the LSTM model is constructed to
integrate  multi-dimensional data and input it by
quarterly sampling, and then, the bearing capacity
degradation rate is output to provide a quantitative basis
for maintenance and improve the level of intelligent
monitoring. When the PSO algorithm performs the
feature screening objective function, the goal is to
maximize the sum of the correlation coefficients
between the feature and the bearing capacity
degradation rate. Its calculation process is shown in
Equation (10).

f (X) - Z inzlxi['pi|

In Equation (10), x; represents the feature selection
indicator, p; represents the correlation coefficient
between the i-th crack feature and the degradation rate,
and n represents the total number of features. The core
of LSTM lies in controlling the memory of information
through gating mechanisms. The cell state update
calculation is shown in Equation (11).

(10)

C =f0C_+ilC,

Optimization of PSO
characteristic parameters

Crack ROI extraction
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study proposes a prestressed concrete bearing capacity
analysis model, named OCPGL, which integrates Otsu-
Canny, PSO, GAN, and LSTM algorithms. The specific
structure of this model is shown in Figure 6.
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(1)
In Equation (11), C, represents the current cell state,
[0 represents element-wise multiplication, C,_;

represents discarding old information through the forget
gate, and C, represents adding new candidate
information through the input gate, f; is the output
value of the forget gate, i, is the output value of the input
gate. The LSTM prediction result is then corrected based
on the "Highway Reinforced Concrete and Prestressed
Concrete Bridge and Culvert Design Code," as shown in

Equation (12).
Mb+ﬂm]

Yeorr = ypred [{1_ ka

In Equation (12), w represents the crack width, d
represents the crack density, o and S represent the
empirical coefficients from the code, f,, represents the
standard value of the concrete axial compressive
strength, and y;,,,.q represents the predicted result.

(12)

Prestressed Concrete Bearing Capacity Analysis
Based on Bridge Cracks
Feature Analysis and Prediction of Bridge Cracks

In order to verify the superiority of the Otsu-Canny
edge detection algorithm, the study compared it with
three edge detection algorithms: Robert Cross Gradient
Operator (Robert), Sobel operator (Sobel), and Laplace
operator (Laplacian). The experimental system version
used Windows 11, the operating system was Ubuntu
22.04 OS, the programming language was Python 3.8,
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the graphics card was NVIDIA GeForce RTX 4070, and
the memory was 64GB. The core software and toolkits
used in the experiment include: 1. Image processing
tool: OpenCV 4.8.0(for crack image preprocessing, edge
detection and contour extraction); 2. Deep learning
framework: PyTorch 2.0.1(for implementing Otsu-
Canny algorithm optimization, GAN data augmentation,
and LSTM model training); 3. Data analysis tools:
NumPy 1.24.3 (for numerical computation), Pandas
1.5.3(for dataset management); 4. Visualization tools:
Matplotlib 3.7.1(used for drawing algorithm accuracy
curves, false detection rate comparison charts,... etc.).
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The experimental datasets were the BSD500 dataset and
the BSD-Noisy dataset. BSD500 was the gold standard
dataset in the field of edge detection and image
segmentation, containing 500 natural images. BSD-
Noisy was created by artificially adding noise to
BSD500. The study conducted accuracy tests on
extracting characteristic parameters of concrete cracks
(i.e., the number and size of cracks) using four edge
detection algorithms; namely, Otsu-Canny, Robert,
Sobel, and Laplacian, respectively in the BSD500 and
BSD-Noisy datasets. The test results are shown in
Figure 7.
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Figure 7. Comparison of the accuracy of extracting characteristic parameters of concrete cracks

As shown in Figure 7(a), when training on the BSD500
dataset, the accuracy of Otsu-Canny reached 76.2% after
50 iterations. The overall accuracy gradually stabilized
after 80 iterations, reaching 89.5%. Robert’s accuracy
fluctuated the most between 50 and 100 iterations, with the
highest and lowest values reaching 73.8% and 54.7%,
respectively. As shown in Figure 7(b), when training on the
BSD-Noisy dataset, the overall accuracy curve of Otsu-
Canny converged faster, gradually stabilized after 50

iterations, and the highest accuracy was 78.3%. In
conclusion, the Otsu-Canny edge detection algorithm
demonstrated superior accuracy, stronger convergence, and
minimal fluctuations as the number of iterations increased,
outperforming the other algorithms by a significant margin.
To further assess the robustness of the Otsu-Canny
algorithm, the study performed noise-resistance
comparison tests on all four algorithms using noisy images.
The results of these tests are presented in Figure 8.
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Figure 8. Comparison of noise immunity test results in noisy images
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As shown in Figure 8(b), the Otsu-Canny edge detection
algorithm still demonstrated excellent robustness when

As shown in Figure 8(a), when the test scale was 20, processing images with salt and pepper noise, with a
the false detection rate of Otsu-Canny was 5% for maximum false detection rate of 7%. In summary, Otsu-
images processed with Gaussian noise. As the test scale Canny exhibited strong robustness when facing different
increased, the false detection rate of the Otsu-Canny types of noise and showed significant advantages in
algorithm only increased slightly. When the test scale noise resistance under complex noise environments. In
reached 100, its highest false detection rate was 9%. The order to further verify the recognition performance of
other three comparison algorithms all showed high false the Otsu-Canny algorithm on actual bridge cracks, the
detection rates when processing images with Gaussian study conducted a visualization test of crack
noise. The highest false detection rates of Robert, Sobel, recognition, and the results are shown in Figure 9.

and Laplacian were 30%, 33%, and 35%, respectively.

S TS

(a) Otsu-Canny (b) Robert (c) Sobel (d) Laplacian

Figure 9. Crack identification visualization display

As shown in Figure 9(a), the Otsu-Canny edge edge detection algorithm, the study further evaluated the
detection algorithm retained real cracks, produced few performance of the prestressed concrete bearing
pseudo-edges, and achieved a detection accuracy of capacity analysis model OCPGL by comparing it with
98.5%. As shown in Figure 9(b), Robert was sensitive to three analysis models: Convolutional Neural Network—
noise, the detected edges appeared coarse, the positioning Long Short-Term Memory Network (CNN-LSTM),
accuracy was limited, and some edge details were easily Gated Recurrent Unit-Dense Layer (GRU-Dense), and
lost, resulting in a detection accuracy of 85.2%. As shown Radial Basis Function—Support Vector Machine (RBF-
in Figure 9(c), the Sobel algorithm missed a large amount SVM). The experiment used a Donghua static test strain
of real crack distribution data of bridges. The detected gauge for signal acquisition. A 40 kN through-hole jack
crack positions showed low overlap with the actual served as the hydraulic pump, and a rubber-based foil
cracks, making it less effective in bridge crack resistance strain gauge was employed for strain
monitoring. As shown in Figure 9(d), Laplacian measurement. The collected strain signals and bearing
responded strongly to image grayscale mutations and was capacity data were preprocessed (filtered and denozed)
also highly sensitive to noise, generating a large number by DHDAS 6.0, the supporting software of Donghua
of pseudo-edges that interfered with the identification of test. The subsequent data analysis (such as the
actual crack distributions, and caused significant edge calculation of mean square error and the solution of the
offset. In summary, the Otsu-Canny edge detection coefficient of determination R2) was accomplished
algorithm accurately detected the distribution of through the Statistics and Machine Learning Toolbox of
transverse and longitudinal cracks in bridges and MATLAB 2023a, and the visualization of the deflection
performed better than the other algorithms. curve simulation results was implemented using

OriginPro 2023b. The raw-material parameters of the
Quantification of Section Loss in Bridge Deck prestressed concrete design experiment are listed in
Cracks and Experimental Validation Table 1.

After verifying the performance of the Otsu-Canny
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Table 1. Prestressed concrete experimental raw-material parameters

Classification Project Symbol Unit Data
Length L cm 600
Height H cm 40

Prestressed concrete ) - -
Axial compressive design strength fed MPa 18.5
Axial tensile design strength fig MPa 1.68
Diameter d mm 6

Ordinary reinforcing bars | Elastic modulus E MPa 2.2%10°
Standard value of tensile strength fek MPa 245

As shown in Table 1, the selected prestressed clay-
mixed concrete beam had a length of 600 cm and a
height of 40 cm. Its compressive strength was 18.5 MPa,
and its tensile strength was 1.68 MPa. The inner
diameter of the steel bar was 6 mm, with a tensile
strength of 2.1x10° MPa and an abrasion resistance of
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245 MPa. The accuracy of OCPGL’s prediction
performance was verified under identical factory
conditions. Four types of model were studied. As the
existing structural condition deteriorated, the crack
width increased to 0.5 mm. The results produced ten sets
of comparative outcomes.
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Figure 10. Prediction accuracy test results under extreme conditions

As shown in Figure 10(a), under normal working
conditions, the Mean Square Error (MSE) of the bearing
capacity predicted by OCPGL was only 0.015 kN-m?,
and its Coefficient of Determination (R?) was 0.98. The
MSE of the GRU-Dense model was slightly higher than
that of OCPGL, reaching 0.045 kN-m?, with an R? of
0.88. The bearing capacity MSE of CNN-LSTM and
RBF-SVM was much higher than that of the previous
two models, reaching 0.068 kN-m? and 0.12 kN-m?,
respectively. As shown in Figure 10(b), under extreme
working conditions, the MSE and R? of OCPGL did not
change significantly, remaining at 0.018 kN-m? and
0.97, respectively. When subjected to extreme working
conditions, the MSE of the other three models increased
by about 40%, and their R? values dropped below 0.9. In
summary, the proposed model demonstrated better
bearing capacity prediction accuracy under both normal
and extreme conditions. To further verify the effect of
OCPGL on the bearing capacity analysis of prestressed
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concrete in actual bridges, the deflection curve
simulation values of the four models were
experimentally compared, and the results are shown in
Figure 11.
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Figure 11. Deflection curve simulation results
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As shown in Figure 11, the measured deflection
value at point 1 was 2f/mm, the deflection value at point
2 was 2.5f/mm, and the deflection value at point 3
reached 3.1f/mm. Among the four comparison models,
only the predicted values of OCPGL were consistent
with the actual values. The deflection value at point 1
was 2f/mm, the deflection value at point 2 was 2.4f/mm,
and the deflection value at point 3 was 3f/mm, with a
prediction accuracy of up to 96.5%. The prediction
values of the other three models deviated significantly.
The experimental results demonstrated that OCPGL
provided a more reliable basis for bearing capacity
assessment and deformation control of prestressed
concrete structures in actual engineering by accurately
predicting the key characteristic points and overall
trends of the deflection curve. Its stability and accuracy
in complex engineering scenarios were far superior to

those of the comparison models.

Verification of the Correlation between Cracks,
Section Loss and Bearing Capacity

The above experimental results have confirmed the
high accuracy of the OCPGL model in bearing capacity
prediction, and the core advantage of this model lies in
the deep integration of the correlation between cracks,
section loss and bearing capacity. To further verify that
this correlation is not an accidental result of model
fitting, but an inherent law of prestressed concrete
structures, the study conducted loading experiments on
120 groups of prestressed concrete beam specimens,
measuring the corresponding values of different crack
widths, steel bar corrosion rates and ultimate bearing
capacity. The results are shown in Table 2.

Table 2. Measured correlation data of cracks, section loss and bearing capacity

Crack width | Steel bar corrosion | Proportion of concrete | Ultimate bearing | Decline rate of bearing
(mm) rate (%) spalling area (%) capacity (kN) capacity (%)
0.1 1.2 2.1 485 1.0
0.3 45 5.3 462 5.6
0.5 8.9 8.7 431 12.1
0.8 15.3 12.5 398 19.6

The data in Table 2 is derived from the loading
experiments of 120 sets of full-scale prestressed
concrete beam specimens. The parameters of the
specimens are referred to in Table 1 (the axial
compressive design strength of the concrete is 18.5MPa,
and the diameter of the reinforcing bars is 6mm). Among
them, the crack width is the maximum crack width on
the surface of the specimen (accuracy +0.01mm); The
corrosion rate of reinforcing bars is the cross-sectional
loss rate (corrosion area/original cross-sectional area,
measured by electrochemical impedance spectroscopy,
with an error of +0.2%). The proportion of concrete
spalling area is the ratio of the spalling area to the total
cross-sectional area of the specimen (calculated by
image segmentation method). The ultimate bearing
capacity is the maximum load at which the specimen
fails (measured by a 40kN through-hole jack). The rate
of decline in bearing capacity is calculated with
reference to the benchmark specimen without cracks and
no cross-sectional loss (ultimate bearing capacity
490kN). The data in the table directly reflects the
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synchronous variation law of crack propagation,
intensified section loss and degradation of bearing
capacity.

DISCUSSION

In recent years, the latest research in the field of
crack detection and feature extraction has further
promoted the development of crack detection
technology. For instance, scholars, such as Nguyen, S.D.
etal., systematically compared deep learning algorithms
and found that ResNet/DenseNet performed best in
crack classification, FasterR-CNN in object detection,
and pix2pix in segmentation tasks. However, their
research focused on asphalt pavement and remained at
the level of "crack recognition accuracy”. The
association between crack characteristics and internal
damage of pavement structures was not established, let
alone extended to bearing capacity assessment (Nguyen
et al., 2023). Although the research of Umar et al.
demonstrated the application of CNNs and RNNs in the
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crack detection of photovoltaic panels, pointing out the
limitations of traditional methods, such as low
efficiency and high error rate, the research object was
homogeneous materials, like photovoltaic panels, and it
did not involve the mapping of characteristic parameters
and structural performance (Umar et al., 2024).

However, the current research on the bearing
capacity of prestressed concrete also faces bottlenecks,
such as "mechanism simplification” and "data
limitations”. Although Mari et al. established a
nonlinear time-correlation model considering the
influence of corrosion and analyzed the weakening of
bearing capacity and stiffness caused by corrosion, their
model was only for frame structures and did not quantify
the dynamic correlation between crack propagation and
steel bar corrosion. It only regarded corrosion as an
independent variable and ignored the key coupling
effect that "cracks provide channels for corrosive
media” (Mari et al., 2022). Yang et al. generated 4165
sets of virtual data through finite element simulation and
constructed a prediction model for the bearing capacity
of rusted prestressed concrete beams. However, relying
on a virtual database, their study lacks the coupling
analysis of actual crack characteristics and the degree of
rusting, and their model does not incorporate the bearing
capacity degradation law under sequential loads, making
it difficult to reflect the performance of the structure
throughout its life cycle (Yang et al., 2023; Adam et al.,
2023).

Overall, existing studies either focus on crack
detection in a single scenario or emphasize the
independent impact of corrosion on bearing capacity,
but none of them have formed a complete chain of
"crack feature extraction — quantification of section
loss — dynamic prediction of bearing capacity”. The
innovation of the research is reflected in the following
aspects: 1. For the first time, the quantitative
relationship between crack width and steel bar corrosion
rate, section loss and bearing capacity decrease was
quantified, filling the theoretical gap of "crack
morphology - structural damage - mechanical
properties”, and it has more engineering guidance value
than the qualitative analysis of Mari et al. 2. By
organically integrating the precise detection of Otsu-
Canny, the feature screening of PSO, the data
augmentation of GAN and the time-series modeling of
LSTM, it not only solves the problem of "insufficient
data in semi-supervised learning” pointed out by
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Nguyen et al., but also overcomes the limitations of
Yang et al.’s virtual data, achieving a deep coupling of
algorithm advantages and physical mechanisms.

CONCLUSION

In view of that traditional prestressed concrete
bearing capacity analysis methods ignore the intrinsic
correlation between cracks, section loss and bearing
capacity, and have incomplete crack feature extraction,
low efficiency of multi-source data fusion and
insufficient long-term prediction accuracy, this study
not only designed the OCPGL prestressed concrete
bearing capacity analysis model, but also revealed the
cascading influence mechanism of the three through
experiments. It provides a complete basis from
"phenomenon observation" to "mechanism
quantification™ for the assessment of carrying capacity.
This model automatically completes crack edge
detection and double-threshold optimization through the
Otsu-Canny algorithm, uses the PSO algorithm to screen
the core correlation features of crack-section loss to
reduce data redundancy, generates enhanced data under
extreme working conditions with the help of GAN to
improve the generalization ability of the model, and
captures the bearing capacity degradation time-series
law based on the correlation mechanism through the
LSTM network, thus effectively solving the problem of
nonlinear prediction in complex stress environments.
The experimental results demonstrated that the accuracy
of the Otsu-Canny algorithm reached 89.5% after
several iterations, with the highest false detection rate of
bridge cracks under different noise impacts reaching
9%. The detection accuracy for different types of crack
was as high as 98.5%. Regarding the OCPGL
evaluation, the model's bearing capacity MSE was only
0.015 kN-m?, with an Rz of 0.98. The prediction
accuracy for the deflection curves at various bridge
measurement points was up to 96.5%. In terms of the
correlation mechanism, the crack width is significantly
positively correlated with the corrosion rate of
reinforcing bars. When the crack width exceeds 0.2mm,
the corrosion rate significantly accelerates. The increase
in the corrosion rate of steel bars, the decrease in bearing
capacity, the increase in the proportion of concrete
spalling area, and the decrease in bearing capacity
confirm that cracks significantly reduce bearing
capacity by intensifying cross-sectional loss. Overall,
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the core value of OCPGL lies in transforming the
quantitative correlation among cracks, section loss, and
bearing capacity into a computable predictive model. It
demonstrates an accurate ability to depict the correlation
rules under various load conditions, noise environments,
and data-scarce scenarios. However, limited by current
experimental conditions, the model's ability to
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