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 The load-bearing capacity analysis of pre-stressed concrete in bridge engineering is a 
core technology for structural safety evaluation. It has long faced challenges in 
insufficient detection accuracy under complex stress environments and low efficiency 
in multi-source data fusion. Traditional analysis methods rely on a single mechanical 
model or empirical experience, making it difficult to accurately capture the nonlinear 
relationship between crack development and load-bearing capacity degradation. 
Therefore, this study proposes a prestressed concrete load-bearing capacity analysis 
model based on a dual-threshold edge detection algorithm. Experimental results show 
that the accuracy of the improved edge detection algorithm reaches a maximum of 
89.5% after iteration, with the misdetection rate of bridge cracks under various noise 
influences being as high as 9%. Evaluation of the fusion analysis model shows that the 
Mean Square Error (MSE) of its load-bearing capacity is only 0.015 kN·m2, and the 
coefficient of determination R2 is 0.98. These results indicate that the proposed 
prestressed concrete load-bearing capacity analysis model can effectively improve the 
prediction accuracy of load-bearing capacity under complex stress environments and 
accurately capture the nonlinear relationship between crack development and load-
bearing capacity degradation. Compared with existing research, the core contributions 
of this study are reflected in three aspects: 1. A collaborative analysis framework for 
crack characteristics and section loss was constructed, quantifying the coupling 
influence mechanism of the two on bearing capacity and breaking through the 
limitations of traditional single-factor analysis; 2. A prestressed concrete bearing 
capacity analysis model was proposed. Through algorithms, the core characteristics of 
crack-section loss were precisely screened, and the problem of dynamic bearing 
capacity prediction under small samples was solved, filling the technical gap of 
nonlinear mapping in complex stress environments; 3. The experiment verified the 
quantitative correlation between crack size and steel bar damage (for every 0.1mm 
increase in crack width, the steel bar corrosion rate increases by approximately 15%), 
providing an operational quantitative method for inferring internal structural damage 
from surface cracks. This study provides a new technical approach for bridge structural 
safety assessment and contributes to the development of intelligent monitoring and 
full-life-cycle maintenance technologies for prestressed concrete structures. 
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INTRODUCTION 

 

In recent years, the vigorous development of bridge 

engineering leads to the widespread application of 

prestressed concrete structures in various types of 

bridges due to their excellent bearing performance 

(Farneti et al., 2023). However, the impact of bridge 

cracks and the resulting cross-sectional loss on the 

bearing capacity of prestressed concrete becomes 

increasingly significant, making bridge cracks a key 

research topic in the field of bridge engineering (Ni et 

al., 2025). Accurately identifying cracks, extracting 

features, and monitoring bearing capacity are crucial to 

ensuring bridge safety and durability (Tonelli et al., 

2023). Traditional detection methods have insufficient 

accuracy and poor adaptability in complex crack image 

recognition and feature extraction, making it difficult to 

meet the requirements of modern bridge engineering. 

An efficient and accurate processing solution is urgently 

needed. Therefore, this study proposes a new prestressed 

concrete bearing capacity analysis model, which takes 

into account crack recognition accuracy, feature 

extraction efficiency, and dynamic monitoring 

capabilities. In this model, the Canny Edge Detection 

Algorithm (Canny), improved by Otsu, combines the 

advantages of threshold segmentation and edge 

detection (Salunke et al., 2023), and the Particle Swarm 

Optimization (PSO) algorithm effectively extracts crack 

features and improves analysis accuracy (Demir et al., 

2023). At the same time, the model also combines the 

Generative Adversarial Network (GAN) with Long 

Short-Term Memory (LSTM) to achieve dynamic time 

series monitoring of the bearing capacity of prestressed 

concrete. It is expected that this model can break through 

the limitations of traditional single detection and 

promote the development of bridge structure health 

monitoring towards precision and intelligence. This 

study innovatively integrates the neural network and the 

detection algorithm architecture, breaking the 

inefficiency of traditional detection, and has important 

theoretical significance and engineering application 

value for improving the safety and durability of bridge 

engineering. 

 

RELATED WORKS 

 

The Otsu-Canny algorithm is an image edge 

detection method that combines Otsu threshold 

segmentation and Canny edge detection. It is often used 

to extract target edges in images and is widely used in 

many fields. Scientists have conducted extensive 

discussions on this algorithm. For example, Ramadhan 

proposed an edge detection method using Otsu threshold 

and Canny edge to address the problem that low-

resolution images often suffer from quality degradation 

and important details are lost due to noise and blur. 

Experimental results showed that this method had a 

lower loss value and was therefore recommended as a 

more effective method for low-resolution image 

processing (Ramadhan et al., 2025). Zhang et al. 

developed an adaptive segmentation approach that 

integrates the Otsu method with a dynamic Canny edge 

detection technique to mitigate the influence of external 

disturbances on sea-sky line identification. 

Experimental outcomes demonstrated that the proposed 

method maintained strong accuracy and robustness in 

handling images captured in complex maritime 

environments (Zhang et al., 2024). Xiong et al. proposed 

an improved Canny edge detection algorithm to solve 

the problems of low efficiency, susceptibility to human 

interference, and low measurement accuracy of 

traditional manual sorting and size measurement 

methods in the production process of photosynthetic 

devices. Experimental results showed that the algorithm 

achieved pixel center point positioning error compliance 

with the average execution time of 143.34ms (Xiong et 

al., 2025). Choi and Ha introduced a method for 

automatically selecting three suitable thresholds in the 

Canny edge detection algorithm by employing the actor-

critic algorithm to address the thresholding issue. 

Experimental results across various datasets confirmed 

the practicality and effectiveness of the proposed 

algorithm (Choi & Ha, 2023). In response to the lack of 

early prevention and detection of breast tumor cases, 

Triwibowo et al. suggested applying the Canny edge 

detection algorithm to process breast X-ray images 

utilizing the Support Vector Machine method for 

classifying the types. The detection results showed that 

the classification accuracy was 95%. From the results 

obtained, it can be seen that the application system was 

very suitable for the early identification of breast tumors 

(Triwibowo et al., 2023). 

With the large-scale development of infrastructure 

construction and the widespread application of 
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prestressed concrete materials, new theoretical models 

and analysis methods have been continuously proposed 

and applied in the field of prestressed concrete bearing 

capacity research. Engineers have carried out extensive 

studies in this area. For instance, Zhou et al. performed 

multi-stage variable amplitude fatigue tests on three 

groups of prestressed concrete beams with different 

sizes to investigate the fatigue damage mechanism of 

prestressed concrete beams under fatigue loads. The 

results indicated that the increase in residual bearing 

capacity of prestressed concrete beams decreased as the 

cross-sectional size increased (Zhou et al., 2025). In 

order to explore whether spun prestressed concrete piles 

could replace foundation solutions, Farzana et al. used 

various analysis methods and static pile load tests to 

estimate the vertical bearing capacity of spun 

prestressed concrete piles in the Jolshiri area of Dhaka, 

Bangladesh. The experiment showed that the prestressed 

piles had good substitutability (Farzana et al. 2024). Hu 

et al. built and tested eight beams under cyclic loading 

to evaluate the hysteresis performance of aramid fiber 

reinforced polymer prestressed concrete beams. The test 

variables included the type of prestressed tendons and 

the ratio of internal to external tendons. The experiment 

showed that the damage of all beams was mainly 

concrete crushing and non-prestressed steel bars 

ruptured in pure bending sections (Hu et al., 2024). Li et 

al. (2024) introduced a novel approach utilizing 

distributed acoustic sensing technology to monitor and 

detect wire breaks in prestressed concrete tubes, aiming 

to assess the condition of these tubes. The results 

showed that this method could quickly and effectively 

capture wire breaks and noise in various environments 

(Li et al., 2024). Gleich and Maurer proposed a shear 

analysis method to perform structural evaluation on 

existing old prestressed concrete bridges. Experimental 

results showed that the proposed concrete shear analysis 

method could more realistically determine the shear 

bearing capacity of prestressed beams compared to the 

truss model under the current standardized state (Gleich 

& Maurer, 2023). 

To sum up, existing research has made certain 

progress in the analysis of the bearing capacity of 

prestressed concrete. However, there are three 

significant limitations in the current research: 1. Focus 

is more on the influence of a single factor (such as only 

cracks or only section loss) on the bearing capacity, 

while ignoring the coupling effect of the two (for 

example, crack propagation accelerates the corrosion of 

steel bars, and corrosion in turn aggravates the 

development of cracks). 2. The correlation between 

cracks and steel bar damage is mostly described 

qualitatively, lacking quantitative models, making it 

difficult to infer the degree of internal steel bar section 

loss from the surface crack characteristics. 3. Traditional 

models have insufficient generalization ability in small 

sample sizes and complex noise environments, making 

it difficult to meet the dynamic monitoring requirements 

of actual bridges. The research integrates multiple 

algorithms based on actual needs to solve the above 

problems. The proposed prestressed concrete bearing 

capacity analysis model that combines neural networks 

and detection algorithms has good performance. It is 

expected that this model can promote the development 

of bridge structure health monitoring towards precision 

and intelligence. 

 

Design of Prestressed Concrete Bearing Capacity 

Based on Crack Features and Section Loss 

Bridge Crack Identification and Feature Parameter 

Extraction Method Design 

With the deep integration of intelligent monitoring 

technology for bridge engineering and health 

management of prestressed concrete structures, the need 

to accurately identify the impact of cracks on bearing 

capacity is becoming increasingly urgent (Usman & 

Abdullah, 2023). However, traditional detection 

methods are insufficient in capturing crack features and 

are easily disturbed by environmental noise, making it 

difficult to balance detection sensitivity and 

computational efficiency (Alherbawi et al., 2023; Fan et 

al., 2024). In order to address the problems of nonlinear 

coupling of crack stress and low efficiency of multi-

scale crack feature recognition in prestressed concrete 

structures of bridges, the Canny detection algorithm is 

proposed. The algorithm dynamically optimizes edge 

responses by simulating the detection mechanism of 

biological visual edge perception, so that the crack 

identification process focuses more on the characteristic 

crack extension path caused by stress concentration. The 

structure of the Canny detection algorithm is shown in 

Figure 1. 
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Figure 1. Structure diagram of Canny detection algorithm 

 

As shown in Figure 1, the Canny detection algorithm 

first inputs the image and parameters, and then performs 

Gaussian filtering to reduce noise. Then, the horizontal 

and vertical gradients of the image are obtained, and the 

gradient amplitude and direction are calculated. Then, 

the non-maximum suppression step is entered, and then 

double threshold selection is performed, and edge 

connection is performed through hysteresis 

thresholding. The above processing flow is repeated 

until all pixels are detected, and finally, the detected 

image is output. Gaussian filtering is used to smooth the 

image and remove noise. The definition of the two-

dimensional Gaussian function is shown in Equation (1). 

 

 

                                                                                    (1) 

 

 

In Equation (1), 𝜎 represents the standard deviation 

of the Gaussian kernel, controlling the smoothing 

degree, and 𝑥, 𝑦 represent the center coordinates of the 

Gaussian function along the x and y axes. Next, in the 

gradient magnitude and direction calculation step, the 

Sobel operator is employed to compute the gradient in 

both the horizontal and vertical directions of the image. 

The horizontal and vertical Sobel operators are 

represented in Equation (2). 

 

 

 

 

 

 

 

 

 

                                                                                    (2) 

 

 

 

 

In Equation (2), 𝐺𝑥 and 𝐺𝑦 represent the Sobel 

operators in the horizontal and vertical directions, 

respectively, 𝐺 is the gradient amplitude. Using these 

two equations, the gradient magnitude and direction are 

calculated, as shown in Equation (3). 

 

                                                                                   (3) 

 

In Equation (3),  represents the direction of the 

gradient. Although the Canny edge detection algorithm 

plays a role in processing bridge crack images, it still has 

limitations, such as relying on empirical double 

threshold selection, insufficient adaptability to complex 

images, and sensitivity to noise, making it difficult to 

suppress the irregular surface texture of concrete and 

monitoring noise interference (Syahifitri, 2023; Liu et 

al., 2024). Therefore, the introduction of the gradient-

based dual-threshold Otsu algorithm is proposed, which 

resolves these issues through adaptive threshold 

computation based on gradient information, global pixel 

statistical feature analysis, and multi-scale edge fusion. 

The Otsu-Canny edge detection algorithm flow, 

combining Canny and Otsu, is shown in Figure 2. 
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Figure 2. Otsu-Canny edge detection algorithm workflow diagram 

In Figure 2, the Otsu-Canny algorithm first performs 

image preprocessing. Then, the image gradient amplitude 

is calculated, and the gradient double threshold Otsu 

algorithm is used to adaptively obtain the optimal double 

threshold. Then, non-maximum suppression is 

implemented to refine the edge, and the strong and weak 

edges are distinguished by hysteresis threshold processing 

and irrelevant pixels are excluded to obtain high and low 

threshold edge images. Finally, isolated noise points in the 

low threshold edge image are removed to output an 

accurate edge image. The Otsu algorithm is an image 

binarization algorithm based on maximizing the inter-class 

variance. The total number of pixels in the image is usually 

related to the grayscale, as shown in Equation (4). 

 

                                                                                    (4) 

 

In Equation (4), the number of pixels with grayscale 

value i is 𝑁𝑖, and L represents the number of grayscale 

levels. The probability of grayscale value i is the ratio of 

the total number of pixels to the number of pixels with 

grayscale value i. The image is subsequently segmented 

using the threshold, and the process for computing the 

foreground probability is outlined in Equation (5). 

 

                                                                                    (5) 

In Equation (5), t represents the threshold, and 

𝑝𝑖 represents the probability of grayscale value i. When 

processing an image with a lower threshold, both strong 

and weak edges of the target object will be detected, 

making the true edges appear relatively continuous. The 

isolated pixel points that appear are more likely to 

belong to discrete noise interference, and the between-

class variance g is calculated as shown in Equation (6) 

 

                                                                                    (6) 

 

In Equation (6), 𝜔0 and 𝜔1 represent the foreground 

and background probabilities, respectively, while 𝜇0 and 

𝜇1 refer to the average gray level, and  represents the 

total average gray level of the image. Otsu-Canny 

searches through all possible thresholds to find the one 

that maximizes g, where the foreground and background 

differences are greatest, resulting in the best 

segmentation effect. After identifying bridge cracks, the 

study proposes using PSO for feature extraction to 

quantify the impact of cracks on the prestressed concrete 

bearing capacity of the bridge. In summary, the flow of 

the bridge crack recognition and feature parameter 

extraction method is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Bridge crack identification and characteristic parameter extraction method flow 
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As shown in Figure 3, the method first inputs the 

bridge image, then preprocesses it. Next, the PSO 

algorithm further optimizes the Otsu-Canny threshold, 

and the optimized algorithm performs edge detection on 

the image. After morphological processing and 

connected region labeling, the PSO algorithm is used to 

extract crack features, ultimately generating a visualized 

crack area and detection report. 

 

Prestressed Concrete Bearing Capacity Analysis 

Model Construction 

As mentioned earlier, crack characteristics and 

section loss can affect the load-bearing capacity of 

prestressed concrete through a synergistic effect, but the 

specific action path (how to aggravate section damage 

through crack development and how to infer the 

degradation of load-bearing capacity through section 

loss) remains unclear. To accurately construct a carrying 

capacity analysis model, it is necessary to first clarify 

the intrinsic correlation mechanism among the three. 

The core logic can be summarized as cascading 

influence and quantitative feedback :1. Crack → Section 

loss: When the crack width exceeds 0.2mm, external 

moisture and chloride ions invade the surface of the 

reinforcing bar along the crack, accelerating 

electrochemical corrosion. As the crack width increases, 

the corrosion rate of the reinforcing bars rises, and the 

cross-sectional loss rate of the reinforcing bars 

(corrosion area/original area) increases after 6 months. 

If surface cracks in concrete are accompanied by forking 

(the number of forking ≥2), this will lead to an 

expansion of the local spalling area, further weakening 

the effective force-bearing area of the cross-section. 2. 

Section loss → Decreased bearing capacity: The rate of 

section loss of reinforcing bars increases, the efficiency 

of prestress transmission decreases, and the ultimate 

bearing capacity of the beam body drops. When the area 

of concrete section spalling exceeds 10%, the height of 

the compression zone decreases and the flexural bearing 

capacity declines. The interrelationship chain among the 

three can be summarized as follows: crack propagation 

→ intensified cross-sectional damage → reduced 

effective load-bearing section → degradation of bearing 

capacity. Therefore, crack characteristics and section 

loss will interact with each other and jointly reduce the 

bearing capacity of prestressed concrete structures. 

Therefore, after completing the identification and 

feature extraction of bridge cracks, the decrease in the 

compressive capacity of components caused by the 

section loss in the compression zone and the increased 

risk of shear failure caused by the shear section loss 

should also be considered. In order to accurately 

evaluate the current safety performance of bridge 

structures, provide the targeted technical basis for 

maintenance and reinforcement, reveal the evolution 

law of prestressed concrete structure performance, 

realize cross-scale mapping from pixel-level image 

analysis to engineering mechanics response, and solve 

the core problem of the influence of cracks and section 

loss on the bearing capacity of concrete; the study 

further explores the correlation between bridge cracks, 

section loss and prestressed concrete bearing capacity. 

The analysis roadmap is shown in Figure 4. 
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Figure 4. Correlation exploration and analysis roadmap 
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As illustrated in Figure 4, the approach outlined in 

the study begins by reviewing relevant materials to 

establish a theoretical foundation for the research. Then, 

data collection is carried out, and crack detection and 

crack parameter measurement are carried out based on 

the data collected. Then, the degree of section loss is 

evaluated by detecting concrete spalling and steel bar 

corrosion rate. After comprehensively considering the 

synergistic effect of the two, the obtained data is 

corrected with the bearing capacity analysis parameters, 

and then, the mechanical parameters of cracks and 

section loss are mapped and simulated for verification, 

and correlation modeling is carried out, and finally, the 

engineering application is realized, completing the 

transformation from research to engineering practice. 

The bearing capacity detection of prestressed concrete is 

a key technology in the field of bridge engineering, but 

the traditional method relies on empirical formulae, and 

there are problems, such as high cost and low efficiency. 

Therefore, the study introduces LSTM combined with 

GAN, processes time series data through memory units, 

captures long-term dependencies, and solves the 

problem of insufficient detection data, as shown in 

Figure 5. 
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Figure 5. The bearing capacity analysis process combining GAN and LSTM 

 

As shown in Figure 5, the study integrates various 

discrete monitoring data into a continuous data stream 

for bridge-related monitoring data, then extracts the key 

features that affect the bearing capacity of bridge 

prestressed concrete, and then normalizes the data to 

eliminate the dimension effect. Subsequently, the GAN 

algorithm is introduced to enhance the normalized data, 

generate more diverse samples to expand the dataset, 

and then form a test set. The processed test set is input 

into the LSTM model, and the bridge data characteristics 

are analyzed by using the LSTM's learning ability for 

time series data. Finally, the Softmax function is used 

for classification to determine whether the state of the 

bridge prestressed concrete structure is normal or 

abnormal, thereby providing a basis for bridge bearing 

capacity assessment and maintenance. The 

normalization operation process is shown in Equation 

(7). 

 

                                                                                    (7) 

 

 

In Equation (7), x represents the raw data, and 𝑥𝑚𝑎𝑥 

and 𝑥𝑚𝑖𝑛 are the maximum and minimum values of the 

data, respectively. This step is used for preprocessing 

the bridge monitoring data to improve the model's 

training performance. In GAN, the generator G and the 

discriminator D undergo adversarial training to enhance 

the objective, as shown in Equation (8). 

 

                                                                                    (8) 

 

In Equation (8), x represents the raw data, z 

represents noise, 𝑝𝑑𝑎𝑡𝑎 (𝑥) represents the real data 

distribution, and 𝑝(𝑧) represents the noise distribution. 

Finally, the Softmax converts the raw scores output by 

the LSTM into probabilities to assess the bearing 

capacity state of the prestressed concrete bridge. The 

Softmax operation flow is shown in Equation (9). 

 

                                                                             (9) 

In Equation (9), z represents the input vector, K 

represents the number of output categories, and 𝑧𝑗 

represents the j-th input value. Through the operation of 

the Softmax function, these raw scores are converted 

into a probability distribution, where the value of each 

element lies between (0,1), and the sum of all elements' 

probabilities equals 1, thus representing the probability 
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that the input sample belongs to each category. Based on 

the methods for bridge crack recognition, cross-

sectional loss, and feature parameter extraction, as well 

as prestressed concrete bearing capacity detection, the 

study proposes a prestressed concrete bearing capacity 

analysis model, named OCPGL, which integrates Otsu-

Canny, PSO, GAN, and LSTM algorithms. The specific 

structure of this model is shown in Figure 6. 
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Figure 6. Specific structure diagram of OCPGL analysis model 

 

As shown in Figure 6, OCPGL integrates multiple 

technologies to achieve full-chain analysis. First, the 

Otsu-Canny algorithm is used to identify and extract 

crack feature parameters, and then, the PSO algorithm is 

used to select core features from redundant features, and 

the core features of the cracks are fused and evaluated 

with the cross-sectional loss. Then, the GAN algorithm 

is used to generate multiple enhanced data to cover 

extreme working conditions and solve the small sample 

problem. Finally, the LSTM model is constructed to 

integrate multi-dimensional data and input it by 

quarterly sampling, and then, the bearing capacity 

degradation rate is output to provide a quantitative basis 

for maintenance and improve the level of intelligent 

monitoring. When the PSO algorithm performs the 

feature screening objective function, the goal is to 

maximize the sum of the correlation coefficients 

between the feature and the bearing capacity 

degradation rate. Its calculation process is shown in 

Equation (10). 

 

                                                                                  (10) 

In Equation (10), 𝑥𝑖 represents the feature selection 

indicator, 𝜌𝑖 represents the correlation coefficient 

between the i-th crack feature and the degradation rate, 

and n represents the total number of features. The core 

of LSTM lies in controlling the memory of information 

through gating mechanisms. The cell state update 

calculation is shown in Equation (11). 

 

                                                                                  (11) 

In Equation (11), 𝐶𝑡 represents the current cell state, 

 represents element-wise multiplication, 𝐶𝑡−1 

represents discarding old information through the forget 

gate, and 𝐶̃𝑡 represents adding new candidate 

information through the input gate，𝑓𝑡 is the output 

value of the forget gate, 𝑖𝑡 is the output value of the input 

gate. The LSTM prediction result is then corrected based 

on the "Highway Reinforced Concrete and Prestressed 

Concrete Bridge and Culvert Design Code," as shown in 

Equation (12). 

 

                                                                                  (12) 

 

In Equation (12),  represents the crack width, d 

represents the crack density,  and  represent the 

empirical coefficients from the code, 𝑓𝑐𝑘 represents the 

standard value of the concrete axial compressive 

strength, and 𝑦𝑡𝑝𝑟𝑒𝑑 represents the predicted result. 
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three edge detection algorithms: Robert Cross Gradient 
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the graphics card was NVIDIA GeForce RTX 4070, and 

the memory was 64GB. The core software and toolkits 

used in the experiment include: 1. Image processing 

tool: OpenCV 4.8.0(for crack image preprocessing, edge 

detection and contour extraction); 2. Deep learning 

framework: PyTorch 2.0.1(for implementing Otsu-

Canny algorithm optimization, GAN data augmentation, 

and LSTM model training); 3. Data analysis tools: 

NumPy 1.24.3 (for numerical computation), Pandas 

1.5.3(for dataset management); 4. Visualization tools: 

Matplotlib 3.7.1(used for drawing algorithm accuracy 

curves, false detection rate comparison charts,… etc.). 

The experimental datasets were the BSD500 dataset and 

the BSD-Noisy dataset. BSD500 was the gold standard 

dataset in the field of edge detection and image 

segmentation, containing 500 natural images. BSD-

Noisy was created by artificially adding noise to 

BSD500. The study conducted accuracy tests on 

extracting characteristic parameters of concrete cracks 

(i.e., the number and size of cracks) using four edge 

detection algorithms; namely, Otsu-Canny, Robert, 

Sobel, and Laplacian, respectively in the BSD500 and 

BSD-Noisy datasets. The test results are shown in 

Figure 7. 
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Figure 7. Comparison of the accuracy of extracting characteristic parameters of concrete cracks 

 

As shown in Figure 7(a), when training on the BSD500 

dataset, the accuracy of Otsu-Canny reached 76.2% after 

50 iterations. The overall accuracy gradually stabilized 

after 80 iterations, reaching 89.5%. Robert’s accuracy 

fluctuated the most between 50 and 100 iterations, with the 

highest and lowest values reaching 73.8% and 54.7%, 

respectively. As shown in Figure 7(b), when training on the 

BSD-Noisy dataset, the overall accuracy curve of Otsu-

Canny converged faster, gradually stabilized after 50 

iterations, and the highest accuracy was 78.3%. In 

conclusion, the Otsu-Canny edge detection algorithm 

demonstrated superior accuracy, stronger convergence, and 

minimal fluctuations as the number of iterations increased, 

outperforming the other algorithms by a significant margin. 

To further assess the robustness of the Otsu-Canny 

algorithm, the study performed noise-resistance 

comparison tests on all four algorithms using noisy images. 

The results of these tests are presented in Figure 8. 
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Figure 8. Comparison of noise immunity test results in noisy images 
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As shown in Figure 8(a), when the test scale was 20, 

the false detection rate of Otsu-Canny was 5% for 

images processed with Gaussian noise. As the test scale 

increased, the false detection rate of the Otsu-Canny 

algorithm only increased slightly. When the test scale 

reached 100, its highest false detection rate was 9%. The 

other three comparison algorithms all showed high false 

detection rates when processing images with Gaussian 

noise. The highest false detection rates of Robert, Sobel, 

and Laplacian were 30%, 33%, and 35%, respectively. 

As shown in Figure 8(b), the Otsu-Canny edge detection 

algorithm still demonstrated excellent robustness when 

processing images with salt and pepper noise, with a 

maximum false detection rate of 7%. In summary, Otsu-

Canny exhibited strong robustness when facing different 

types of noise and showed significant advantages in 

noise resistance under complex noise environments. In 

order to further verify the recognition performance of 

the Otsu-Canny algorithm on actual bridge cracks, the 

study conducted a visualization test of crack 

recognition, and the results are shown in Figure 9. 

(a) Otsu-Canny (b) Robert (c) Sobel (d) Laplacian  

Figure 9. Crack identification visualization display 

 

As shown in Figure 9(a), the Otsu-Canny edge 

detection algorithm retained real cracks, produced few 

pseudo-edges, and achieved a detection accuracy of 

98.5%. As shown in Figure 9(b), Robert was sensitive to 

noise, the detected edges appeared coarse, the positioning 

accuracy was limited, and some edge details were easily 

lost, resulting in a detection accuracy of 85.2%. As shown 

in Figure 9(c), the Sobel algorithm missed a large amount 

of real crack distribution data of bridges. The detected 

crack positions showed low overlap with the actual 

cracks, making it less effective in bridge crack 

monitoring. As shown in Figure 9(d), Laplacian 

responded strongly to image grayscale mutations and was 

also highly sensitive to noise, generating a large number 

of pseudo-edges that interfered with the identification of 

actual crack distributions, and caused significant edge 

offset. In summary, the Otsu-Canny edge detection 

algorithm accurately detected the distribution of 

transverse and longitudinal cracks in bridges and 

performed better than the other algorithms. 

 

Quantification of Section Loss in Bridge Deck 

Cracks and Experimental Validation 

After verifying the performance of the Otsu-Canny 

edge detection algorithm, the study further evaluated the 

performance of the prestressed concrete bearing 

capacity analysis model OCPGL by comparing it with 

three analysis models: Convolutional Neural Network–

Long Short-Term Memory Network (CNN-LSTM), 

Gated Recurrent Unit–Dense Layer (GRU-Dense), and 

Radial Basis Function–Support Vector Machine (RBF-

SVM). The experiment used a Donghua static test strain 

gauge for signal acquisition. A 40 kN through-hole jack 

served as the hydraulic pump, and a rubber-based foil 

resistance strain gauge was employed for strain 

measurement. The collected strain signals and bearing 

capacity data were preprocessed (filtered and denozed) 

by DHDAS 6.0, the supporting software of Donghua 

test. The subsequent data analysis (such as the 

calculation of mean square error and the solution of the 

coefficient of determination R²) was accomplished 

through the Statistics and Machine Learning Toolbox of 

MATLAB 2023a, and the visualization of the deflection 

curve simulation results was implemented using 

OriginPro 2023b. The raw-material parameters of the 

prestressed concrete design experiment are listed in 

Table 1. 

 



Load-Bearing Capacity Analysis of …                                                                                   Yu Pei, Ziyi Lyu, Lijuan Xie, Shimeng Liu 
 

- 74 - 

Table 1. Prestressed concrete experimental raw-material parameters 

Classification Project Symbol Unit Data 

Prestressed concrete 

Length L cm 600 

Height H cm 40 

Axial compressive design strength fcd MPa 18.5 

Axial tensile design strength ftd MPa 1.68 

Ordinary reinforcing bars 

Diameter d mm 6 

Elastic modulus Es MPa 2.2*105 

Standard value of tensile strength fsk MPa 245 

 

As shown in Table 1, the selected prestressed clay-

mixed concrete beam had a length of 600 cm and a 

height of 40 cm. Its compressive strength was 18.5 MPa, 

and its tensile strength was 1.68 MPa. The inner 

diameter of the steel bar was 6 mm, with a tensile 

strength of 2.1×105 MPa and an abrasion resistance of 

245 MPa. The accuracy of OCPGL’s prediction 

performance was verified under identical factory 

conditions. Four types of model were studied. As the 

existing structural condition deteriorated, the crack 

width increased to 0.5 mm. The results produced ten sets 

of comparative outcomes. 
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Figure 10. Prediction accuracy test results under extreme conditions 

 

As shown in Figure 10(a), under normal working 

conditions, the Mean Square Error (MSE) of the bearing 

capacity predicted by OCPGL was only 0.015 kN·m2, 

and its Coefficient of Determination (R2) was 0.98. The 

MSE of the GRU-Dense model was slightly higher than 

that of OCPGL, reaching 0.045 kN·m2, with an R2 of 

0.88. The bearing capacity MSE of CNN-LSTM and 

RBF-SVM was much higher than that of the previous 

two models, reaching 0.068 kN·m2 and 0.12 kN·m2, 

respectively. As shown in Figure 10(b), under extreme 

working conditions, the MSE and R2 of OCPGL did not 

change significantly, remaining at 0.018 kN·m2 and 

0.97, respectively. When subjected to extreme working 

conditions, the MSE of the other three models increased 

by about 40%, and their R2 values dropped below 0.9. In 

summary, the proposed model demonstrated better 

bearing capacity prediction accuracy under both normal 

and extreme conditions. To further verify the effect of 

OCPGL on the bearing capacity analysis of prestressed 

concrete in actual bridges, the deflection curve 

simulation values of the four models were 

experimentally compared, and the results are shown in 

Figure 11. 
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Figure 11. Deflection curve simulation results 
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As shown in Figure 11, the measured deflection 

value at point 1 was 2f/mm, the deflection value at point 

2 was 2.5f/mm, and the deflection value at point 3 

reached 3.1f/mm. Among the four comparison models, 

only the predicted values of OCPGL were consistent 

with the actual values. The deflection value at point 1 

was 2f/mm, the deflection value at point 2 was 2.4f/mm, 

and the deflection value at point 3 was 3f/mm, with a 

prediction accuracy of up to 96.5%. The prediction 

values of the other three models deviated significantly. 

The experimental results demonstrated that OCPGL 

provided a more reliable basis for bearing capacity 

assessment and deformation control of prestressed 

concrete structures in actual engineering by accurately 

predicting the key characteristic points and overall 

trends of the deflection curve. Its stability and accuracy 

in complex engineering scenarios were far superior to 

those of the comparison models. 

 

Verification of the Correlation between Cracks, 

Section Loss and Bearing Capacity 

The above experimental results have confirmed the 

high accuracy of the OCPGL model in bearing capacity 

prediction, and the core advantage of this model lies in 

the deep integration of the correlation between cracks, 

section loss and bearing capacity. To further verify that 

this correlation is not an accidental result of model 

fitting, but an inherent law of prestressed concrete 

structures, the study conducted loading experiments on 

120 groups of prestressed concrete beam specimens, 

measuring the corresponding values of different crack 

widths, steel bar corrosion rates and ultimate bearing 

capacity. The results are shown in Table 2. 

 

Table 2. Measured correlation data of cracks, section loss and bearing capacity 

Crack width 

(mm) 

Steel bar corrosion 

rate (%) 

Proportion of concrete 

spalling area (%) 

Ultimate bearing 

capacity (kN) 

Decline rate of bearing 

capacity (%) 

0.1 1.2 2.1 485 1.0 

0.3 4.5 5.3 462 5.6 

0.5 8.9 8.7 431 12.1 

0.8 15.3 12.5 398 19.6 

 

The data in Table 2 is derived from the loading 

experiments of 120 sets of full-scale prestressed 

concrete beam specimens. The parameters of the 

specimens are referred to in Table 1 (the axial 

compressive design strength of the concrete is 18.5MPa, 

and the diameter of the reinforcing bars is 6mm). Among 

them, the crack width is the maximum crack width on 

the surface of the specimen (accuracy ±0.01mm); The 

corrosion rate of reinforcing bars is the cross-sectional 

loss rate (corrosion area/original cross-sectional area, 

measured by electrochemical impedance spectroscopy, 

with an error of ±0.2%). The proportion of concrete 

spalling area is the ratio of the spalling area to the total 

cross-sectional area of the specimen (calculated by 

image segmentation method). The ultimate bearing 

capacity is the maximum load at which the specimen 

fails (measured by a 40kN through-hole jack). The rate 

of decline in bearing capacity is calculated with 

reference to the benchmark specimen without cracks and 

no cross-sectional loss (ultimate bearing capacity 

490kN). The data in the table directly reflects the 

synchronous variation law of crack propagation, 

intensified section loss and degradation of bearing 

capacity. 

 

DISCUSSION 

 

In recent years, the latest research in the field of 

crack detection and feature extraction has further 

promoted the development of crack detection 

technology. For instance, scholars, such as Nguyen, S.D. 

et al., systematically compared deep learning algorithms 

and found that ResNet/DenseNet performed best in 

crack classification, FasterR-CNN in object detection, 

and pix2pix in segmentation tasks. However, their 

research focused on asphalt pavement and remained at 

the level of "crack recognition accuracy". The 

association between crack characteristics and internal 

damage of pavement structures was not established, let 

alone extended to bearing capacity assessment (Nguyen 

et al., 2023). Although the research of Umar et al. 

demonstrated the application of CNNs and RNNs in the 
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crack detection of photovoltaic panels, pointing out the 

limitations of traditional methods, such as low 

efficiency and high error rate, the research object was 

homogeneous materials, like photovoltaic panels, and it 

did not involve the mapping of characteristic parameters 

and structural performance (Umar et al., 2024). 

However, the current research on the bearing 

capacity of prestressed concrete also faces bottlenecks, 

such as "mechanism simplification" and "data 

limitations". Although Mari et al. established a 

nonlinear time-correlation model considering the 

influence of corrosion and analyzed the weakening of 

bearing capacity and stiffness caused by corrosion, their 

model was only for frame structures and did not quantify 

the dynamic correlation between crack propagation and 

steel bar corrosion. It only regarded corrosion as an 

independent variable and ignored the key coupling 

effect that "cracks provide channels for corrosive 

media" (Mari et al., 2022). Yang et al. generated 4165 

sets of virtual data through finite element simulation and 

constructed a prediction model for the bearing capacity 

of rusted prestressed concrete beams. However, relying 

on a virtual database, their study lacks the coupling 

analysis of actual crack characteristics and the degree of 

rusting, and their model does not incorporate the bearing 

capacity degradation law under sequential loads, making 

it difficult to reflect the performance of the structure 

throughout its life cycle (Yang et al., 2023; Adam et al., 

2023). 

Overall, existing studies either focus on crack 

detection in a single scenario or emphasize the 

independent impact of corrosion on bearing capacity, 

but none of them have formed a complete chain of 

"crack feature extraction → quantification of section 

loss → dynamic prediction of bearing capacity". The 

innovation of the research is reflected in the following 

aspects: 1. For the first time, the quantitative 

relationship between crack width and steel bar corrosion 

rate, section loss and bearing capacity decrease was 

quantified, filling the theoretical gap of "crack 

morphology - structural damage - mechanical 

properties", and it has more engineering guidance value 

than the qualitative analysis of Mari et al. 2. By 

organically integrating the precise detection of Otsu-

Canny, the feature screening of PSO, the data 

augmentation of GAN and the time-series modeling of 

LSTM, it not only solves the problem of "insufficient 

data in semi-supervised learning" pointed out by 

Nguyen et al., but also overcomes the limitations of 

Yang et al.’s virtual data, achieving a deep coupling of 

algorithm advantages and physical mechanisms. 

 

CONCLUSION 

 

In view of that traditional prestressed concrete 

bearing capacity analysis methods ignore the intrinsic 

correlation between cracks, section loss and bearing 

capacity, and have incomplete crack feature extraction, 

low efficiency of multi-source data fusion and 

insufficient long-term prediction accuracy, this study 

not only designed the OCPGL prestressed concrete 

bearing capacity analysis model, but also revealed the 

cascading influence mechanism of the three through 

experiments. It provides a complete basis from 

"phenomenon observation" to "mechanism 

quantification" for the assessment of carrying capacity. 

This model automatically completes crack edge 

detection and double-threshold optimization through the 

Otsu-Canny algorithm, uses the PSO algorithm to screen 

the core correlation features of crack-section loss to 

reduce data redundancy, generates enhanced data under 

extreme working conditions with the help of GAN to 

improve the generalization ability of the model, and 

captures the bearing capacity degradation time-series 

law based on the correlation mechanism through the 

LSTM network, thus effectively solving the problem of 

nonlinear prediction in complex stress environments. 

The experimental results demonstrated that the accuracy 

of the Otsu-Canny algorithm reached 89.5% after 

several iterations, with the highest false detection rate of 

bridge cracks under different noise impacts reaching 

9%. The detection accuracy for different types of crack 

was as high as 98.5%. Regarding the OCPGL 

evaluation, the model's bearing capacity MSE was only 

0.015 kN·m², with an R² of 0.98. The prediction 

accuracy for the deflection curves at various bridge 

measurement points was up to 96.5%. In terms of the 

correlation mechanism, the crack width is significantly 

positively correlated with the corrosion rate of 

reinforcing bars. When the crack width exceeds 0.2mm, 

the corrosion rate significantly accelerates. The increase 

in the corrosion rate of steel bars, the decrease in bearing 

capacity, the increase in the proportion of concrete 

spalling area, and the decrease in bearing capacity 

confirm that cracks significantly reduce bearing 

capacity by intensifying cross-sectional loss. Overall, 
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the core value of OCPGL lies in transforming the 

quantitative correlation among cracks, section loss, and 

bearing capacity into a computable predictive model. It 

demonstrates an accurate ability to depict the correlation 

rules under various load conditions, noise environments, 

and data-scarce scenarios. However, limited by current 

experimental conditions, the model's ability to 

generalize to rare working conditions, such as extreme 

corrosion or sudden overloads, still requires more 

engineering data. Future work will focus on model 

lightweight optimization and hardware adaptation, 

promoting its practical application in bridge health 

monitoring systems. 
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