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 The rapid growth of road transportation is significantly degrading air quality, with 
pollutants, like PM10, SO2, and NOₓ, contributing to respiratory issues and serious 
health risks. This study analyzes the spatial distribution and seasonal variation of PM10, 
NOₓ, and SO2 using daily data from 23 monitoring stations across Navi Mumbai and 
Thane from 2014 to 2023. 

Focusing on monsoon, pre-monsoon, post-monsoon, and winter seasons, the study 
integrates GIS-based spatial interpolation techniques-to-explore how seasonal changes 
influence pollutant levels. Results reveal persistently high PM10 concentrations across 
all stations. Despite the monsoon season’s cleansing effect, moderate-to-poor air 
quality persisted due to continuous vehicular and industrial emissions. Notably, 
Kharghar, Taloja, and Kalamboli recorded PM10 levels of 257 µg/m³ and 217 µg/m³ in 
2014-2015. Nerul peaked at 600 µg/m³ in the 2017 pre-monsoon season, surging to 
1000 µg/m³ on June 21, 2023. Post-monsoon readings in 2014 showed Airoli at 320.99 
µg/m³ and Glaxo premises at 496 µg/m³. 

Persistent pollution in areas, like Pimpaleshwar Mandir and Ulwe, highlights the need 
for continuous monitoring. Since 2020, NO levels have worsened, particularly in 
industrial zones, such as Mahape and Nerul, shifting from moderate to very poor across 
seasons. Figures 7, 9, and 11 illustrate these trends. In contrast, SO2 concentrations 
remained stable, with slight post-2020 increases in Mahape and Pimpaleshwar Mandir 
during post-monsoon periods. 

GIS analysis helped identify pollution hotspots and assess regulatory effectiveness. 
This study highlights the critical need for ongoing air quality monitoring and targeted 
mitigation strategies to address escalating public health concerns in the region. 

Keywords: PM10, NOx, SO2 GIS, Spatial interpolation, Air quality mapping. 

  

 

INTRODUCTION 

 

Industrial and economic activities, such as waste 

management, thermal power plants, and vehicular 

traffic, significantly affect tropospheric air quality. 

These activities alter the composition of the surrounding 

air, impacting the atmosphere at global, regional, and 

local levels (Kuldeep et al., 2022). The rapid 

urbanization of cities, like Delhi and Mumbai in 21st-

century India, is largely attributed to rural-to-urban 

migration (Patel & Burkle, 2012). Urbanization and 

population growth adversely influence water, air, and 

soil quality (Huff & Angeles, 2011). 

Air pollution has emerged as one of the most pressing 

global challenges. It involves the presence of airborne 

substances, with pollutant concentrations exceeding 

https://jjce.just.edu.jo 

https://jjce.just.edu.jo/jjce/
https://jjce.just.edu.jo/jjce/


GIS-driven Analysis of …                                                                                                                 Sujaya Wadekar, S. Sangita Mishra 
 

- 46 - 

normal levels due to a mix of natural and anthropogenic 

activities (Pathakoti et al., 2021). These substances have 

been shown to cause detrimental effects on human and 

animal health, damage vegetation, degrade materials, and 

harm the environment (Othman et al., 2010). Urban air 

pollution in Indian cities is marked by elevated levels of 

pollutants, such as carbon monoxide (CO), sulfur dioxide 

(SO2), particulate matter (PM), and nitrogen oxides 

(NOx), which primarily originate from the automotive 

industry. For instance, vehicles running on diesel and 

petrol emit pollutants, like SO2, NOx, hydrocarbons 

(HCs), volatile organic compounds (VOCs), PM, and CO, 

significantly contributing to urban air quality degradation 

(Bosco et al., 2005, Batterman et al., 2007, Wu et al., 

2011, Emami et al., 2018, Marc et al., 2016). The 

statistical correlation between PM10, SO2, and NOₓ plays 

a vital role in understanding air pollution dynamics and 

improving air quality assessments. These pollutants often 

share common sources, such as vehicular emissions, 

industrial activities, and combustion of fossil fuels, which 

is reflected in their correlated concentration levels. A 

strong positive correlation between PM10 and NOₓ 

typically indicates traffic-related emissions, while a 

moderate correlation between SO2 and the other 

pollutants may point to industrial processes or power 

generation. Analyzing these correlations helps in 

identifying the dominant sources of pollution within a 

given area, providing a scientific basis for implementing 

targeted control measures. Moreover, correlation analysis 

is essential in predicting pollution episodes, particularly 

in relation to seasonal variations and meteorological 

conditions. Understanding how these pollutants vary 

together also supports the calibration of air quality 

models, allowing for more accurate simulations and 

forecasts. From a public health perspective, the combined 

presence of highly correlated pollutants can lead to 

compounded respiratory effects, making their joint 

assessment critical for health risk evaluations. Traffic 

variables, such as vehicular speed, traffic volume, and 

road gradient, play a crucial role in influencing vehicle 

emissions and concentrations of air pollutants (CO, NO, 

TVOCs, SO2), underscoring their importance in urban 

planning for evaluating and modeling environmental 

impacts, like air and noise pollution; a strong correlation 

between these traffic parameters and pollutant levels was 

observed across multiple sampling locations (Zaydoun et 

al., 2019). 

Ultimately, the correlation among PM10, SO2, and 

NOₓ not only informs environmental policy and 

regulatory standards, but also facilitates effective air 

quality management by highlighting pollution hotspots 

and the efficiency of mitigation strategies. 

Understanding the composition of pollutants, such as 

PM10, SO2, and NOx, requires a systematic approach to 

identify their potential sources in urban areas to mitigate 

environmental challenges associated with air quality. 

Many countries are actively monitoring air quality to 

enhance policy-making mechanisms (Mendoza et al., 

2019). In India, the Central Pollution Control Board 

(CPCB), headquartered in New Delhi, oversees air quality 

monitoring through the NAAQMS (National Ambient 

Air Quality Monitoring Series), which is part of the 

NAMP (National Air Monitoring Programme). The 

reviewed literature reveals that despite various 

technological and methodological advancements, a 

significant research gap persists in developing an 

integrated, standardized, and comprehensive framework 

for air pollution monitoring and forecasting. Ranjeet S. 

Sokhi et al. (April 2022) highlighted the challenges in 

mapping pollutants and the need to combine ground 

station and remote sensing data, while Rongjin Yang et 

al. (March 2022) emphasized the lack of accurate datasets 

in China due to cost limitations and introduced an IPv6-

based system for enhanced monitoring. Vasilis 

Evagelopoulos et al. (March 2022) presented a cloud-

based system, AirDMS, capable of managing large 

datasets, but did not address cross-regional 

standardization. Suman (Aug. 2020) criticized the 

variability in air quality indices across Indian cities and 

argued for a more accurate depreciation index. Xiaoxin 

Fu et al. (Feb. 2016) explored the link between PM2.5, 

humidity, and visibility, indicating the complexity of 

pollutant interactions. Terry Gordon et al. (June 2018) 

stressed the importance of personal exposure monitoring, 

especially in the context of Indian rural and urban 

disparities. Ankur Sati & Manju Mohan (2014) pointed 

out the dominant role of regional pollution under adverse 

climatic conditions, and Subrata Chattopadhyay et al. 

(2010) used GIS to analyze seasonal variations in air 

quality. However, across all these studies, a common gap 

remains: the absence of a unified, low-cost, and scalable 

system that combines indoor-outdoor pollution data, 

personal exposure, and real-time analytics using remote 

sensing, ground stations, and GIS tools, along with 

standardized indices for inter-regional comparison. 

Public demand compelled authorities to implement 
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various control measures, leading to noticeable air quality 

improvements between 1991 and 2003 (Gupta & Kumar, 

2006). During this period, industries contributing to air 

pollution relocated to peripheral areas, vehicles adopted 

advanced technologies, and low emission fuels were 

introduced. However, Mumbai's air quality has since 

deteriorated, with PM10 and Suspended Particulate Matter 

(SPM) levels exceeding the CPCB's recommended limits, 

as reported by the National Environmental Engineering 

Research Institute (NEERI, 2013). For residential areas, 

the permissible limits for PM10 and SPM are 60 µg/m³ and 

140 µg/m³, respectively. Studies on air pollution in 

megacities have further identified high concentrations of 

total suspended particles (TSPs) as a primary concern 

(Mage et al., 1996). Elevated levels of particulate matter 

are widely recognized for their significant adverse effects 

on health and the environment (Chhabra et al., 2010; 

Kampa & Castanas, 2008; Srivastava & Kumar, 2002; 

Zhou et al., 2014; Kristiansson et al., 2015). 

STUDY AREA 

 

The study area encompasses 337.49 km² in 

Maharashtra, covering 23 stations across Navi Mumbai 

and parts of the Thane district. It is situated between 

longitudes 72.90° to 73.15° East and latitudes 18.90° to 

19.30° North. Navi Mumbai, a rapidly urbanizing city, 

is highly vulnerable to climate risks, such as heatwaves, 

forest fires, and deteriorating air quality due to 

urbanization. The 1960s Regional Plan for the Mumbai 

Metropolitan Region (MMR) designated large industrial 

zones near Parsik Hills and Taloja, adjacent to Navi 

Mumbai. These zones host highly polluting industries, 

resulting in severe health and environmental challenges. 

In 2019, the Maharashtra Pollution Control Board 

highlighted a rise in air-borne diseases linked to these 

industries. Details of the study area, along with air 

quality monitoring stations, are illustrated in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study area location map and monitoring stations 
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METHODOLOGY 

 

Collection and Pre-processing of Air Quality Data 

The data is collected from various ground stations set 

up by Central Pollution Control Board (CPCB) and 

Maharashtra Pollution Control Board (MPCB). The 

locations of the monitoring stations are shown in 

Table 1. 

 

Table 1. Air quality monitoring stations 

Sr. No. AQM_Stations Latitude Longitude Sr. No. AQM_Stations Latitude Longitude 

1 Airoli 19.158 72.98 13 MPCB Nirmal Bhavan 19.114 73.015 

2 Nerul IITM 19.02 73.02 14 Thane Balkun Kolshet 19.23 72.98 

3 Kasar Wadavli 19.26 72.97 15 
Thane Balkum Glaxo 

Premises 
19.21 72.99 

4 Belapur CBD 19.02 73.03 16 Terrace of Kopari 19.184 72.973 

5 Kopripada Vashi 19.08 73.01 17 CIDCO Kharghar 19.04 73.07 

6 
Pimpaleshwar 

Mandir,Thane 
19.21 72.95 18 MIDC Taloja 19.06 73.11 

7 Sanpada MPCB 19.05 73.01 19 Naupada 19.19 72.97 

8 Sector 2A Kalamboli 19.026 73.1 20 Nerul MPCB 19.01 73.04 

9 Tondare Taloja 19.07 73.13 21 Vashi Brigade 19.07 72.99 

10 Upavan Fort 19.22 72.95 22 Rabale TBIA 19.13 73 

11 Airoli Fire Station 19.151 72.989 23 Nerul D Y Patil 19.046 73.024 

12 Nerul STP 19.03 73.02      

 

The collected data from various stations, including 

sources, like CPCB and MPCB, was found noisy and 

unstructured, requiring pre-processing for analysis. The 

dataset includes 24 attributes for a period of 10 years, 

with issues, such as null values and misclassified 

instances. Using Google Colab and Python libraries, like 

Pandas, NumPy, Matplotlib, and Seaborn, the data was 

structured, analyzed, and visualized. Pandas handled 

tabular data manipulation, NumPy supported numerical 

operations, and Matplotlib and Seaborn facilitated trend 

visualization. Python's robust ecosystem enabled 

efficient processing of 19,629 data points, yielding 

meaningful insights through graphs. The graphical 

representation of variation of air pollutants is shown in 

Figures 2 to 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Variation of SO2 with data count 
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The graph shown in Figure 2 illustrates the variation 

of SO2 with data count as a skewed distribution. 

Although it seems to be a normal curve, it is sloping to 

the right and is also called a positively skewed curve. 

The central tendency can better be assessed by median 

and average values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Variation of NOx with data count 

 

The graph shown in Figure 3 illustrates the variation 

of NOx with data count. The frequency distribution is an 

almost symmetrical normal distribution and bell shaped. 

The central tendency can better be assessed by median 

and average values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Variation of PM10 with data count 

 

 

The graph shown in Figure 4 illustrates the variation 

of PM10 with data count. This type of distribution is also 

a bell-shaped asymmetric curve which has a long tail at 

the right and hence can be termed as positively skewed. 

However, the curve is flattened between 100 and 200 

readings on the x axis. Hence, median values can also be 

a better way of assessing the central tendency of data. 

The scatter plots showing relationships amongst the 

air pollutants under study are shown in Figure 5. 

In Figure 5, it is observed that there is a strong 

correlation between SO2 and NOx. The relationship 

between sulphur dioxide (SO2) and nitrogen dioxide 

(NOx) in air pollution can be complex and is influenced 

by various factors, including emission sources, 

atmospheric conditions, and chemical reactions.
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Figure 5. Scatter plot showing relationships among PM10, SO2 and NOx 

 

The relationship between sulphur dioxide (SO2) and 

particulate matter with a diameter of 10 micrometres or 

less (PM10) in air pollution can vary based on several 

factors, including emission sources, atmospheric 

conditions, and the characteristics of the pollutants. 

The R values between PM10 and SO2 (0.075) and 

between PM10 and NOₓ (0.266) suggest a negligible and 

weak correlation, respectively. This implies that PM10 

levels are largely independent of SO2 and show only a 

weak linear association with NOₓ. 

Spatial Temporal Mapping 

 

GIS 3.16 version has been used to delineate the study 

area consisting of 23 station points, where the air quality 

monitoring equipment has been placed. The daily 

concentrations of the criteria pollutants PM10, NOx and 

SO2 have been collected from sources, like MPCB 

(Maharashtra Pollution Control Board), and CPCB from 

23 monitoring stations. 

 

 

Figure 6. Methodology Flow chart 

 

Mapping of PM10, NOx, and SO2 

The data is analysed for SO2, NOx and particulate 

matter (PM10) or Respirable Suspended Particulate 

Matter (RSPM). The locations under different class 

areas, like industrial, residential, and commercial, were 

monitored. Mapping of PM10 which is basically 

Particulate Matter less than 10 micrometers, NOx, as 

well as SO2 involves some defined steps from data 

collection to visualization. After collection of the data, 

the data was processed making sure that the data points 

include the location (latitude and longitude), data and 

PM10 variations. The data was categorized into four 

Conclusion

Results and discussion

Analysis of maps generated by above steps

Mapping of PM10,NOx and SO2 using GIS

Collection of PM10,NOx and SO2 data (MPCB,CPCB)

Delineation of the study area(Parts of Navi Mumbai and Thane)
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distinct seasons; namely, pre-monsoon, monsoon, post-

monsoon, and winter, spanning from 2014 to 2023. 

Then, the data points were loaded in the GIS software 

making sure that the data is in a format compatible with 

the software (CSV format). A point layer has been 

created utilizing the coordinate data representing the 

PM10 monitoring stations. 

 

Spatial Interpolation 

As the main aim of this paper is the assessment of 

the spatial distribution of PM10, NOx, and SO2, spatial 

interpolation was carried out to estimate the values of a 

variable at unsampled locations within an area based on 

the values measured at known locations. Essentially, it 

interpolates the missing values between observed data 

points to generate a seamless surface or map of the 

variable throughout the entire area of interest. Three 

methods of interpolation have been performed, IDW, 

Kriging and Spline and IDW gave better results as 

compared to the other two, as the monitoring stations 

across the study area are uniformly distributed. The 

Inverse Distance Weighted (IDW) model is commonly 

used and operates on the realistic assumption that a 

point's properties are more closely related to those of 

nearby locations than to those farther away (Bartier & 

Keller, 1996; Goutham et.al., 2018). The Inverse 

Distance Weighting (IDW) method provides accurate 

spatial interpolation results due to its assumption that 

nearby points have greater influence on the interpolated 

values than distant ones, aligning with Tobler’s First 

Law of Geography. IDW assigns weights inversely 

proportional to distance, allowing for localized 

precision, especially in densely sampled datasets. Its 

deterministic nature avoids overfitting and ensures 

smooth surface generation, making it ideal for pollutant 

concentration mapping. Moreover, IDW does not 

require assumptions about data distribution, unlike 

geostatistical methods, making it suitable for 

heterogeneous urban environments where air quality 

data often exhibits non-normal spatial patterns. 

The IDW method can be explained as in Equation (1) 

(Burrough & McDonell, 1998). 

 

𝑧(𝑢0) =
∑ 𝑧(𝑢𝑖)𝑑𝑖𝑗

−𝑝𝑛
𝑖=1

∑ 𝑑𝑖𝑗
−𝑝𝑛

𝑖=1

                                                  (1) 

This method is widely utilized in local interpolation 

technique that typically utilizes a moving window to 

determine the area of influence. In the context of vector-

based processing, a circular moving window is 

frequently employed for the analysis of point data. This 

approach assumes that the impact of individual input 

points on the interpolated value at the centre of the 

window diminishes as the distance increases, in 

accordance with an inverse power relationship. More 

specifically, the impact is inversely related to a certain 

exponent (p) of the distance from the centre, as indicated 

in the provided formula. The estimated value at an 

unsampled site is denoted by z(u0), the known data 

points are denoted by z(ui), the distance amongst each 

data point and the unsampled location is denoted by dij, 

and p is a parameter that is usually set to 2. The weights 

are, in general, inversely proportional to the square of 

distance from unsampled site to data point. The larger 

the value of p, the greater the influence of nearer points. 

The denominator ensures that the weights sum to 1, 

allowing a normalized interpolation result. 

 

RESULTS AND DISCUSSION 

 

As discussed in the methodology section, the spatio-

temporal mapping of the point pollutant concentration is 

carried out and the results are discussed in the current 

section. 

 

Spatio-temporal Mapping of PM10 

Season wise maps were generated using GIS from 

2014 to 2023 showing the variations of PM10 in the pre-

monsoon, monsoon, post-monsoon and winter seasons, 

respectively. The six PM10 concentrations are classified 

as: Good, Satisfactory, Moderately polluted, Poor, Very 

Poor, and Severe, and each of them is depicted by a 

distinct colour. Health breakpoints, or favourable 

concentration values of air pollutants, are used to 

determine the likely health effects of each of these 

categories. The different categories are represented by 6 

different colours as shown in Table 2. 

 

  



GIS-driven Analysis of …                                                                                                                 Sujaya Wadekar, S. Sangita Mishra 
 

- 52 - 

Table 2. Concentrations of PM10 category-wise based on national guidelines (India) as 

per the Central Pollution Control Board (CPCB), 2023 

Colour Category Concentration of PM10 (µg/m³) 

0-50 Good 0-50 

51-100 Satisfactory 51-100 

101-250 Moderately poolluted 101-250 

251-350 Poor 251-350 

351-430 Very Poor 351-430 

430+ Severe 430+ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Maximum PM10 distribution in the studied zone 
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Figure 8. Categorical distribution of area affected by maximum PM10 

 

Figure 7 shows seasonal variations in maximum PM10 levels across different periods, and Figure 8 shows 
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the categorical distribution of PM10 affected areas. 

During the pre-monsoon season from 2014 to 2023, 

PM10 concentrations in Navi Mumbai exhibited varying 

pollution levels. Most of the area fell within the 

"Moderately Polluted" category (101-250 µg/m³). The 

"Good" air quality category (0-50 µg/m³) covered 0.52 

km² in 2014, expanded to 2.10 km² by 2020, but 

declined to 1.26 km² in 2021. The "Satisfactory" 

category (51-100 µg/m³) spanned 2.61 km² in 2014, 

peaked at 224.57 km² in 2019, and dropped to 7.40 km² 

in 2023. The "Moderately Polluted" category fluctuated, 

starting at 38.67 km² in 2014, peaking at 328.32 km² in 

2018, and covering 226.69 km² in 2023. The "Poor" 

category (251-350 µg/m³) covered 104.44 km² in 2014, 

fluctuated over the years, and reached 95.14 km² in 

2023. The "Very Poor" category (351-430 µg/m³) also 

showed variations, from 128.34 km² in 2014 to 8.27 km² 

in 2023. Meanwhile, the "Severe" category (430+ 

µg/m³) declined significantly from 62.74 km² in 2014 to 

2.16 km² by 2022. 

During the monsoon season from 2014 to 2023, 

PM10 concentrations in Navi Mumbai were primarily in 

the "Moderately Polluted" category (101-250 µg/m³). 

The "Good" air quality category (0-50 µg/m³) spanned 

0.45 km² in 2017, peaked at 18.37 km² in 2020, and 

decreased to 0.22 km² by 2021. The "Satisfactory" 

category (51-100 µg/m³) fluctuated, covering 5.90 km² 

in 2014, reaching a peak of 293.97 km² in 2020, and 

reducing to 13.34 km² in 2023. The "Moderately 

Polluted" category remained dominant, covering 325.77 

km² in 2014 and 258.90 km² in 2023, with some 

variation over the years. The "Poor" category (251-350 

µg/m³) increased from 5.83 km² in 2014 to 36.65 km² in 

2023. The "Very Poor" category (351-430 µg/m³) first 

appeared in 2021, covering 2.67 km², and expanded to 

14.29 km² by 2023. Similarly, the "Severe" category 

(430+ µg/m³) emerged in 2021, covering 4.84 km², and 

grew to 14.10 km² in 2023. 

During the post-monsoon season from 2014 to 2023, 

PM10 concentrations in Navi Mumbai predominantly fell 

within the "Moderately Polluted" category (101-250 

µg/m³). The "Good" air quality category (0-50 µg/m³) was 

minimal, covering only 0.01 km² in 2014 and increasing to 

1.83 km² in 2020. The "Satisfactory" category (51-100 

µg/m³) fluctuated, starting at 2.54 km² in 2014, peaking at 

227.68 km² in 2019, and decreasing to 12.88 km² by 2023. 

The "Moderately Polluted" category consistently 

dominated, ranging from 324.35 km² in 2014 to 290.42 km² 

in 2023. The "Poor" category (251-350 µg/m³) showed 

significant variation, covering 10.60 km² in 2014, peaking 

at 335.82 km² in 2016, and declining to 33.67 km² in 2023. 

The "Very Poor" category (351-430 µg/m³) first appeared 

in 2015, covering 7.70 km², and dropped to 0.52 km² in 

2023. No "Severe" concentrations (430+ µg/m³) were 

recorded during the period. 

During the winter season from 2014 to 2023, PM10 

concentrations in Navi Mumbai were predominantly in 

the "Moderately Polluted" category (101-250 µg/m³). 

The "Good" air quality category (0-50 µg/m³) was 

scarce, covering only 0.87 km² in 2020. The 

"Satisfactory" category (51-100 µg/m³) fluctuated, 

spanning 2.54 km² in 2014, peaking at 135.48 km² in 

2019, and decreasing to 4.47 km² in 2023. The 

"Moderately Polluted" category consistently dominated, 

increasing from 7.04 km² in 2014 to 198.93 km² in 2023. 

The "Poor" category (251-350 µg/m³) showed some 

variability, covering 128.97 km² in 2014 and 122.91 km² 

in 2023. The "Very Poor" category (351-430 µg/m³) 

peaked at 180.23 km² in 2014 and declined to 11.19 km² 

in 2023. The "Severe" category (430+ µg/m³) was 

recorded at 21.25 km² in 2014 and decreased 

significantly to 1.71 km² in 2023. 

From 2014 to 2023, PM10 concentrations in Navi 

Mumbai exhibited seasonal and spatial variations. Across 

all seasons, the majority of the area consistently fell 

within the "Moderately Polluted" category (101-250 

µg/m³), with varying extents of "Good," "Satisfactory," 

"Poor," "Very Poor," and "Severe" pollution levels. The 

"Good" and "Satisfactory" air quality categories appeared 

sporadically, but generally declined over time, reflecting 

deteriorating air quality. The "Poor" and "Very Poor" 

categories showed significant variability, peaking in 

certain years without a consistent downward trend. 

Although less extensive, the "Severe" category persisted, 

particularly during the winter and pre-monsoon seasons, 

highlighting periods of heightened pollution. 

 

Spatio-temporal Mapping of NOx 

The six classes of NOx concentration are classified 

as: Good, Satisfactory, Moderately polluted, Poor, Very 

Poor, and Severe, and each of them is depicted by a 

distinct colour. The different categories are represented 

by 6 different colours, as shown in the Table 3. 
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Table 3. Concentrations of NOx category-wise based on national guidelines 

(India) as per the Central Pollution Control Board (CPCB), 2023 

Colour Category Concentration of NOx(µg/m³) 

0-40 Good 0-40 

41-80 Satisfactory 41-80 

81-180 Moderately Polluted 81-180 

181-280 Poor 181-280 

281-400 Very Poor 281-400 

400+ Severe 400+ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Maximum NOx distribution in the studied zone 
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Figure 10. Categorical distribution of area affected by NOx 

 

Figure 9 illustrates seasonal variations in maximum NOx levels across different periods, while Figure 10 
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displays the categorical distribution of areas affected by 

NOx. During the pre-monsoon season from 2017 to 2019, 

the majority of the area (over 300 km²) consistently fell 

within the 0-40 μg/m³ range of good category. This 

indicates better air quality during these years compared to 

other periods. From 2020 to 2023, there is a notable 

increase in the areas falling under higher NOx 

concentration ranging from 81-180 μg/m³; i.e. moderately 

polluted category which increased significantly, peaking 

at 93.07 km² in 2021 and 92.89 km² in 2022. Areas under 

the 181-280 μg/m³ grew in recent years, with 25.03 km² 

in 2021 and 24.78 km² in 2023. Under the range 281-400 

μg/m³ which is very poor category, small areas with 

extremely high concentrations (e.g. 3.69 km² in 2022) 

indicated localized pollution. During the years 2014-

2016, the distribution of NOx concentrations shows a mix 

of ranges, with significant areas in both 0-40 μg/m³ and 

41-80 μg/m³ concentrations falling under good to 

satisfactory categories. 

The graph illustrates the year-wise area (in square 

kilometers) affected by NOₓ concentrations during the 

monsoon season from 2014 to 2023. Good category (0–

40 km² range) dominates across all years, indicating that 

most areas experience low NOₓ concentrations. 

Occasional spikes are visible in higher concentrations 

ranging from moderately polluted to poor category. In 

the years 2014 and 2015, a noticeable area of 333 km² 

contributed to good category and 337 km² area 

contributed to satisfactory category, respectively. In the 

year 2017, there was an increase in the area affected by 

moderately polluted category with 163 km² area 

observed under moderately polluted category. A gradual 

increase in moderately polluted category was observed 

from 2020 to 2022.The year 2023 marked the reduction 

in moderate and high concentrations compared to 2022, 

with most areas falling back into the 0-40 km² range. 

In the post-monsoon season, it is observed that the 

good to satisfactory category dominates the study area 

throughout the study period of 10 years. Higher 

concentration ranges of moderately polluted to poor 

category appear periodically, with a few spikes in 

specific years. Substantial increase in areas with 

moderate to high NOₓ concentrations, with 291 km² and 

22.47 km², respectively, is seen in the year 2021, 

showing a significant growth. In 2022 and 2023, a 

moderate reduction in higher concentrations compared 

to 2021 is seen, but with residual areas still affected in 

yellow and orange ranges. 

In the winter season, it is observed that majority of 

the area is dominated by satisfactory category indicated 

by light green colour. From 2014 to 2019, the affected 

areas in the good and satisfactory categories remain 

constantly high round about 300–340 km². Starting in 

2020, there is a noticeable increase in the affected areas 

within the moderate concentration range. For example, 

267km² in 2020,221 km² in 2021,174 km² in 2022 and 

229km² in 2023. Higher concentrations of NOx begin to 

emerge after 2020. 2022 and 2023; see small 

contributions in the highest concentration ranges. 

 

Spatio-temporal Mapping of SO2 

The six classes of SO2 concentration are classified 

as: Good, Satisfactory, moderately polluted, Poor, Very 

Poor, and Severe and each of them is depicted by a 

distinct colour. The different categories are represented 

by 6 different colours, as shown in the Table 4. 

 

Table 4. Concentrations of SO2 category-wise based on national guidelines 

(India) as per the Central Pollution Control Board (CPCB), 2023 

Colour Category Concentration SO2 µg/m³) 

0-40 Good 0-40 

41-80 Satisfactory 41-80 

81-380 Moderately polluted 81-380 

381-800 Poor 381-800 

801-1600 Very Poor 801-1600 

1600+ Severe 1600+ 
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Figure 11. Maximum SO2 distribution in the studied zone 
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Figure 12. Categorical distribution of area affected by SO2 
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Figure 11 highlights seasonal variations in maximum 

SO2 levels across different periods, whereas Figure 12 

shows the categorical distribution of SO2 affected areas. 

The 0-40 km² concentration range of good category 

consistently dominates, indicating that most areas have 

low SO2 concentrations across all years. From 2014 to 

2017, SO2 levels in this category remained stable with 

minimal variation. However, 2018 saw a noticeable drop 

in the 0-40 km² range, followed by a gradual recovery 

until 2020. Another decline occurred in 2022, with slight 

increases in higher concentration ranges, such as 41-80 

km² and 81-380 km², reflecting higher pollution levels. 

By 2023, the situation improved slightly as the area 

affected by the 0-40 km² category increased again. The 

81-380 km² category occasionally appears, but remains 

minor, while severe pollution ranges (poor to severe) are 

negligible or absent, indicating that severe SO2 pollution 

is rare. Year specific anomalies include the 2018 

reduction in low concentration areas, potentially linked 

to specific pollution events or meteorological factors, 

and variability in 2022 and 2023, possibly due to 

changes in emission sources or environmental policies. 

In monsoon, the 0-40 km² concentration range (good 

category) overwhelmingly dominates throughout the 

years, indicating that most areas experience low SO2 

concentrations during the monsoon season. From 2014 

to 2017, the area affected by this category remains 

steady, consistently exceeding 330 km² and reflecting 

very low SO2 levels. A decline in the good category 

occurs in 2018, accompanied by slight increases in 

higher categories (satisfactory to moderately polluted), 

likely due to temporary pollution events or weather 

anomalies. In 2020 and 2021, the good category range 

experiences a significant drop, with increased areas in 

satisfactory to moderately polluted categories, reflecting 

higher pollution levels. However, the good category 

recovers in 2022 and 2023, with minimal areas affected 

by higher concentrations. Severe SO2 concentrations 

representing poor category are nearly absent, indicating 

no extreme pollution levels. The dominance of low SO2 

levels is consistent with the cleansing effects of 

monsoon rains, which reduce air pollution by washing 

out pollutants. Year-specific variations, such as 

increased pollution in 2018, 2020, and 2021, are likely 

due to industrial or environmental factors, while 2022 

and 2023 show a recovery in air quality, with the 0-40 

km² category returning to near-peak levels.  

In post-monsoon season, the good concentration 

category in the range of 0-40 μg/m³ consistently 

dominates most years, indicating that the majority of the 

area experiences low SO2 concentrations during this 

particular season. From 2014 to 2018, the area under this 

category remains high (above 300 km²), with minimal 

contributions from higher concentration categories. In 

2020, the area coming under good category declines to 

242.52 km², accompanied by slight increases in the 

satisfactory and moderately polluted categories, 

reflecting a temporary rise in SO2 pollution. The 

satisfactory category sees a significant increase in 2022, 

reaching 277.51 km², indicating a notable spread of 

moderate SO2 concentrations. By 2023, the good 

category rebounds to 226.84 km², although higher 

categories remain prominent. The moderately polluted 

category sporadically appears, particularly in 2020, 

2022, and 2023, reflecting pollution spikes, while poor 

SO2 concentrations (381+) remain negligible, indicating 

the absence of extreme pollution levels. Post-monsoon 

weather patterns, including reduced rainfall and stagnant 

atmospheric conditions, may contribute to localized 

pollution spikes. Year-specific observations highlight 

predominantly good air quality from 2014 to 2018, 

temporary increases in moderate pollution in 2020, a 

significant spread of moderate concentrations in 2022, 

and some recovery in 2023, with higher categories being 

still notable. temporary increases in moderate pollution 

in 2020, a significant spread of moderate concentrations 

in 2022, and some recovery in 2023. 

The majority of the area across all years lies in the 

lowest concentration range, indicating good category, 

represented by green bars, indicating low SO2 pollution 

levels. However, occasional peaks in higher 

concentration ranges are observed, such as in 2021, 

where substantial areas fall within the good and 

satisfactory ranges, compared to other years. Some 

years, like 2022 and 2023, also show slight increases in 

areas affected by the satisfactory category range. 

Overall, the total area affected by SO2 remains relatively 

stable, with minor fluctuations. The trend shows 

occasional spikes in moderately polluted category, but 

no consistent increasing or decreasing pattern over the 

years. This suggests that while SO2 pollution is largely 

under control, specific years, such as 2021 and 2023, 

might have experienced isolated events leading to 

increased concentrations. 
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CONCLUSIONS 

 

This study presents a comprehensive spatio-

temporal evaluation of PM10 levels across Navi Mumbai 

and Thane from 2014 to 2023, underscoring pronounced 

seasonal fluctuations and long-term shifts in air quality. 

In 2014, the pre-monsoon period saw 87% of the region 

suffering from poor to severe air quality, escalating to 

98% during winter. Although municipal interventions 

brought some improvements by 2017, about 34% of the 

region continued to face unhealthy air conditions. A 

remarkable improvement in air quality was recorded 

during the COVID-19 lockdowns (2019–2020), when 

reduced human activity led to 66% and 12% of the total 

region of the study area registering satisfactory air 

quality. Nevertheless, this progress was short-lived. 

Pollution levels spiked in 2018, 2020, and 2021, largely 

due to rapid urban development, growing vehicular 

usage, ongoing construction, and the absence of rigorous 

enforcement of environmental regulations. The 

resumption of industrial activity post-lockdown, paired 

with increased private transport reliance, further 

exacerbated pollution levels. Compounding the issue 

occurred by meteorological conditions, like low wind 

speeds and temperature inversions, which hindered 

pollutant dispersion. By winter 2022, 68.5% of the study 

area showed poor to severe air quality, though this figure 

improved to 40% in 2023, indicating a slow, but 

positive, trend. Meanwhile, NOₓ levels remained within 

safe limits until 2019, but showed a notable rise 

afterward, especially around industrial areas. SO2 levels 

generally remained low, with sporadic increases post-

2020 in selected zones. 

The study highlights the value of continuous air 

quality monitoring through real-time sensors, 

integration of satellite imagery, and machine learning-

based forecasting for better prediction and management. 

Moving forward, policy frameworks must emphasize 

tighter emission norms, seasonal regulations, and 

sustainable practices in transport and construction. Real-

world applications include creating green buffers in 

pollution-prone areas, promoting electric mobility, 

enforcing dust control at construction sites, and 

encouraging public participation through awareness 

campaigns and citizen monitoring initiatives. A 

coordinated, multi-dimensional approach that blends 

technology, policy, and community engagement is 

essential to achieve lasting improvements in regional air 

quality. 

 Spatio-temporal PM10 Trends: Notable seasonal and 

spatial variations were observed from 2014 to 2023, 

with 87% of the area affected in pre-monsoon 2014, 

increasing to 98% in winter. 

 Seasonal Influences: Winter and pre-monsoon 

periods showed heightened pollution due to poor 

dispersion conditions, while monsoon failed to 

consistently lower pollutant levels. 

 Impact of Interventions: Municipal actions led to 

modest improvement by 2017; COVID-19 

lockdowns (2019–2020) temporarily improved air 

quality. 

 Post-lockdown Surge: Urbanization, traffic growth, 

construction, and weak enforcement caused a spike in 

pollution in 2018, 2020, and 2021; by 2022, 68.5% of 

the area had poor to severe air quality. 

 GIS-based Insights: Spatial interpolation using IDW 

method helped identify pollution hotspots and assess 

intervention effectiveness. 

 Policy Recommendations: Enforce stricter emission 

norms, implement seasonal regulations, and promote 

green infrastructure, EV use, and better construction 

practices. 

 Technological Enhancements: Utilize real-time 

sensors, satellite data, and AI-driven forecasting for 

better air quality management. 

 Public Engagement: Citizen involvement through 

awareness and participatory monitoring is crucial. 

 

 

REFERENCES 

 

Abusalem, Z., Odeh, I., Al-Haqzim, N., Bazlamit, S. M., & 

Al-Saket, A. (2019). Analysis of air pollutants’ 

concentration in terms of traffic conditions and road 

gradient in an urban area. Jordan Journal of Civil 

Engineering, 13(3). 

Alvarez-Mendoza, C.I., Teodoro, A.C., Torres, N., & 

Vivanco, V. (2019). Assessment of remote sensing data 

to model PM10 estimation in cities with a low number 

of air quality stations: A case study in Quito, Ecuador. 

Environmental Sciences Proceedings, 6(7), 85. 



GIS-driven Analysis of …                                                                                                                 Sujaya Wadekar, S. Sangita Mishra 
 

- 62 - 

Bartier, P.M., & Keller, C.P. (1996). Multivariate 

interpolation to incorporate thematic surface data using 

inverse distance weighting (IDW). Computers & 

Geosciences, 22, 795-799. 

Batterman, S., Jia, C., & Hatzivasilis, G. (2007). Migration 

of volatile organic compounds from attached garages to 

residences: A major exposure source. Environmental 

Research, 104, 224-240. 

Bosco, M.L., Varrica, D., & Dongarrà, G. (2005). Case 

study: Inorganic pollutants associated with particulate 

matter from an area near a petrochemical plant. 

Environmental Research, 99, 18-30. 

Burrough, P.A., & McDonnell, R.A. (1998). Principles of 

geographical information systems. Oxford University 

Press. 

Central Pollution Control Board. (2023). National air 

quality index. https://cpcb.nic.in/National-Air-Quality-

Index/ 

Chattopadhyay, S., Gupta, S., & Saha, R. N. (2010). Spatial 

and temporal variation of urban air quality: A GIS 

approach. Journal of Environmental Protection, 1(3), 

264-277. 

Chhabra, S. K., Chhabra, P., Rajpal, S., & Gupta, R. K. 

(2010). Ambient air pollution and chronic respiratory 

morbidity in Delhi. Archives of Environmental Health, 

56(1), 58-64. 

Emami, F., Masiol, M., & Hopke, P.K. (2018). Air 

pollution at Rochester, NY: Long-term trends and 

multivariate analysis of upwind SO₂ source impacts. 

Science of the Total Environment, 612, 1506-1515. 

Evagelopoulos, V., Charisiou, N.D., Logothetis, M., 

Evagelopoulos, G., & Logothetis, C. (2022). Cloud-

based decision support system for air quality 

management. Climate, 10(3), 39. 

Fu, X., Wang, X., Hu, Q., Li, G., Ding, X., Zhang, Y., He, 

Q., Liu, T., Zhang, Z., Yu, Q., Shen, R., & Bi, X. 

(2015). Changes in visibility with PM2.5 composition 

and relative humidity at a background site in the Pearl 

River Delta region. Journal of Environmental Sciences, 

40, 10-19. 

Gordon, T., Balakrishnan, K., Dey, S., Rajagopalan, S., 

Thornburg, J., Thurston, G., Agrawal, A., Collman, G., 

Guleria, R., Limaye, S., Salvi, S., Kilaru, V., & 

Nadadur, S. (2018). Air pollution health research 

priorities for India: Perspectives of the Indo-U.S. 

communities of researchers. Environment International, 

119, 100-108. 

Goutham, P.M., Jayalakshmi, S., & Samundeeswari, R. 

(2018). A study on comparison of interpolation 

techniques for air pollution modelling. Indian Journal 

of Scientific Research, 17(2), 58-63. 

Gupta, I., & Kumar, R. (2006). Trends of particulate matter 

in four cities in India. Atmospheric Environment, 40, 

2552-2566. 

Huff, G., & Angeles, L. (2011). Globalization, 

industrialization and urbanization in pre-World War II 

Southeast Asia. Explorations in Economic History, 

48(1), 20-36. 

Kampa, M., & Castanas, E. (2008). Human health effects 

of air pollution. Environmental Pollution, 151(2), 362-

367. 

Kristiansson, M., Sörman, K., Tekwe, C., & Calderón 

Garcidueñas, L. (2015). Urban air pollution, poverty, 

violence and health—Neurological and immunological 

aspects as mediating factors. Environmental Research, 

140, 511-513. 

Kuldeep, Sisodiya, S., Mathur, A.K., & Verma, P. (2022). 

Assessment of urban air quality for Jodhpur city by the 

air quality index (AQI) and exceedance factor (EF), In 

Advances in Materials, Manufacturing and Energy 

Engineering (Vol. 1, pp. 585-596). Springer Singapore. 

Kushe, V.P., Mishra, S.S., & Charhate, S. (2024). 

Analyzing coastal groundwater variability in 

Sindhudurg, Maharashtra: A spatio-temporal GIS 

approach. Jordan Journal of Civil Engineering, 18(4). 

Mage, D., Ozolins, G., Peterson, P., Webster, A., Orthofer, 

R., Vandeweerd, V., & Gwynne, M. (1996). Urban air 

pollution in megacities of the world. Atmospheric 

Environment, 30(5), 681-686. 

Marc, M., Bielawska, M., Simeonov, V., Namieśnik, J., & 

Zabiegała, B. (2016). The effect of anthropogenic 

activity on BTEX, NOx, SO₂, and CO concentrations in 

urban air of the spa city of Sopot and medium-

industrialized city of Tczew located in North Poland. 

Environmental Research, 147, 513-524. 

National Environmental Engineering Research Institute. 

(2004-2013). Ambient air quality status for six cities of 

India. National Environmental Engineering Research 

Institute. 

Othman, N., Mat Jafri, M.Z., & San, L.H. (2010). 

Estimating particulate matter concentration over arid 

region using satellite remote sensing: A case study in 

Makkah, Saudi Arabia. Modern Applied Science, 4(11), 

131-142. 

Patel, R.B., & Burkle, F.M. (2012). Rapid urbanization and 

the growing threat of violence and conflict: A 21st 

https://cpcb.nic.in/National-Air-Quality-Index/
https://cpcb.nic.in/National-Air-Quality-Index/


Jordan Journal of Civil Engineering, Volume 20, No. 1, 2026 
 

- 63 - 

century crisis. Prehospital and Disaster Medicine, 

27(2), 194-197. 

Pathakoti, M., Muppalla, A., Hazra, S., Venkata, M.D., 

Lakshmi, K.A., Sagar, V.K., Shekhar, R., Jella, S., 

Rama, S.S., & Vijaysundaram, V. (2021). 

Measurement report: An assessment of the impact of a 

nationwide lockdown on air pollution - A remote 

sensing perspective over India. Atmospheric Chemistry 

and Physics, 21(11), 9047-9064. 

Question of Cities. (2024, August 22). Mainstreaming 

climate change in Navi Mumbai’s development plan. 

https://questionofcities.org/mainstreaming-climate-

change-in-navi-mumbais-development-plan/ 

Sokhi, R.S., Moussiopoulos, N., Baklanov, A., Bartzis, J., 

Coll, I., Finardi, S., Friedrich, R., Geels, C., Grönholm, 

T., Halenka, T., Ketzel, M., Maragkidou, A., Matthias, 

V., Moldanova, J., Ntziachristos, L., Schäfer, K., 

Suppan, P., Tsegas, G., Carmichael, G., Franco, V., 

Hanna, S., Jalkanen, J.-P., Velders, G.J.M., & 

Kukkonen, J. (2022). Advances in air quality research– 

current and emerging challenges. Atmospheric 

Chemistry and Physics, 22, 4615-4703. 

Srivastava, A., & Kumar, R. (2002). Economic valuation of 

health impacts of air pollution in Mumbai. 

Environmental Monitoring and Assessment, 75, 135-

143. 

Suman. (2021). Air quality indices: A review of methods to 

interpret air quality status. Materials Today: 

Proceedings, 34, 863-868. 

Wu, J., Wilhelm, M., Chung, J., & Ritz, B. (2011). 

Comparing exposure assessment methods for traffic-

related air pollution in an adverse pregnancy outcome 

study. Environmental Research, 111, 685-692. 

Yang, R., Hao, X., Zhao, L., Yin, L., Liu, L., Li, X., & Liu, 

Q. (2022). Design and implementation of a highly 

accurate spatiotemporal monitoring and early warning 

platform for air pollutants based on IPv6. Scientific 

Reports, 12, Article 11825. 

Zhou, N., Cui, Z., Yang, S., Han, X., Chen, G., Zhou, Z., 

Zhai, C., Ma, M., Li, L., Cai, M., Li, Y., Ao, L., Shu, 

W., Liu, J., & Cao, J. (2014). Air pollution and 

decreased semen quality: A comparative study of 

Chongqing urban and rural areas. Environmental 

Pollution, 187, 145-152. 

 

https://questionofcities.org/mainstreaming-climate-change-in-navi-mumbais-development-plan/
https://questionofcities.org/mainstreaming-climate-change-in-navi-mumbais-development-plan/

