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The rapid growth of road transportation is significantly degrading air quality, with
pollutants, like PMio, SO, and NOi, contributing to respiratory issues and serious
health risks. This study analyzes the spatial distribution and seasonal variation of PMyg,
NOy, and SO, using daily data from 23 monitoring stations across Navi Mumbai and
Thane from 2014 to 2023.

Focusing on monsoon, pre-monsoon, post-monsoon, and winter seasons, the study
integrates GIS-based spatial interpolation techniques-to-explore how seasonal changes
influence pollutant levels. Results reveal persistently high PMio concentrations across
all stations. Despite the monsoon season’s cleansing effect, moderate-to-poor air
quality persisted due to continuous vehicular and industrial emissions. Notably,
Kharghar, Taloja, and Kalamboli recorded PMyg levels of 257 pg/m3 and 217 pg/m3 in
2014-2015. Nerul peaked at 600 pug/m3 in the 2017 pre-monsoon season, surging to
1000 pg/m?3 on June 21, 2023. Post-monsoon readings in 2014 showed Airoli at 320.99
pg/m?3 and Glaxo premises at 496 pg/ma.

Persistent pollution in areas, like Pimpaleshwar Mandir and Ulwe, highlights the need
for continuous monitoring. Since 2020, NO levels have worsened, particularly in
industrial zones, such as Mahape and Nerul, shifting from moderate to very poor across
seasons. Figures 7, 9, and 11 illustrate these trends. In contrast, SO, concentrations
remained stable, with slight post-2020 increases in Mahape and Pimpaleshwar Mandir
during post-monsoon periods.

GIS analysis helped identify pollution hotspots and assess regulatory effectiveness.
This study highlights the critical need for ongoing air quality monitoring and targeted
mitigation strategies to address escalating public health concerns in the region.

Keywords: PMio, NOx, SOz GIS, Spatial interpolation, Air quality mapping.

INTRODUCTION

Industrial and economic activities, such as waste
management, thermal power plants, and vehicular
traffic, significantly affect tropospheric air quality.
These activities alter the compaosition of the surrounding
air, impacting the atmosphere at global, regional, and
local levels (Kuldeep et al., 2022). The rapid
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urbanization of cities, like Delhi and Mumbai in 21%-
century India, is largely attributed to rural-to-urban
migration (Patel & Burkle, 2012). Urbanization and
population growth adversely influence water, air, and
soil quality (Huff & Angeles, 2011).

Air pollution has emerged as one of the most pressing
global challenges. It involves the presence of airborne
substances, with pollutant concentrations exceeding
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normal levels due to a mix of natural and anthropogenic
activities (Pathakoti et al., 2021). These substances have
been shown to cause detrimental effects on human and
animal health, damage vegetation, degrade materials, and
harm the environment (Othman et al., 2010). Urban air
pollution in Indian cities is marked by elevated levels of
pollutants, such as carbon monoxide (CO), sulfur dioxide
(SOy), particulate matter (PM), and nitrogen oxides
(NOy), which primarily originate from the automotive
industry. For instance, vehicles running on diesel and
petrol emit pollutants, like SO, NOy, hydrocarbons
(HCs), volatile organic compounds (VOCs), PM, and CO,
significantly contributing to urban air quality degradation
(Bosco et al., 2005, Batterman et al., 2007, Wu et al.,
2011, Emami et al., 2018, Marc et al., 2016). The
statistical correlation between PMzo, SO,, and NOx plays
a vital role in understanding air pollution dynamics and
improving air quality assessments. These pollutants often
share common sources, such as vehicular emissions,
industrial activities, and combustion of fossil fuels, which
is reflected in their correlated concentration levels. A
strong positive correlation between PMj; and NOx
typically indicates traffic-related emissions, while a
moderate correlation between SO, and the other
pollutants may point to industrial processes or power
generation. Analyzing these correlations helps in
identifying the dominant sources of pollution within a
given area, providing a scientific basis for implementing
targeted control measures. Moreover, correlation analysis
is essential in predicting pollution episodes, particularly
in relation to seasonal variations and meteorological
conditions. Understanding how these pollutants vary
together also supports the calibration of air quality
models, allowing for more accurate simulations and
forecasts. From a public health perspective, the combined
presence of highly correlated pollutants can lead to
compounded respiratory effects, making their joint
assessment critical for health risk evaluations. Traffic
variables, such as vehicular speed, traffic volume, and
road gradient, play a crucial role in influencing vehicle
emissions and concentrations of air pollutants (CO, NO,
TVOCs, SOy), underscoring their importance in urban
planning for evaluating and modeling environmental
impacts, like air and noise pollution; a strong correlation
between these traffic parameters and pollutant levels was
observed across multiple sampling locations (Zaydoun et
al., 2019).

Ultimately, the correlation among PMyo, SO,, and
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NO« not only informs environmental policy and
regulatory standards, but also facilitates effective air
quality management by highlighting pollution hotspots
and the efficiency of mitigation strategies.
Understanding the composition of pollutants, such as
PMso, SO, and NOy, requires a systematic approach to
identify their potential sources in urban areas to mitigate
environmental challenges associated with air quality.
Many countries are actively monitoring air quality to
enhance policy-making mechanisms (Mendoza et al.,
2019). In India, the Central Pollution Control Board
(CPCB), headquartered in New Delhi, oversees air quality
monitoring through the NAAQMS (National Ambient
Air Quality Monitoring Series), which is part of the
NAMP (National Air Monitoring Programme). The
reviewed literature reveals that despite various
technological and methodological advancements, a
significant research gap persists in developing an
integrated, standardized, and comprehensive framework
for air pollution monitoring and forecasting. Ranjeet S.
Sokhi et al. (April 2022) highlighted the challenges in
mapping pollutants and the need to combine ground
station and remote sensing data, while Rongjin Yang et
al. (March 2022) emphasized the lack of accurate datasets
in China due to cost limitations and introduced an 1Pv6-
based system for enhanced monitoring. Vasilis
Evagelopoulos et al. (March 2022) presented a cloud-
based system, AirDMS, capable of managing large
datasets, but did not address cross-regional
standardization. Suman (Aug. 2020) criticized the
variability in air quality indices across Indian cities and
argued for a more accurate depreciation index. Xiaoxin
Fu et al. (Feb. 2016) explored the link between PM;s,
humidity, and visibility, indicating the complexity of
pollutant interactions. Terry Gordon et al. (June 2018)
stressed the importance of personal exposure monitoring,
especially in the context of Indian rural and urban
disparities. Ankur Sati & Manju Mohan (2014) pointed
out the dominant role of regional pollution under adverse
climatic conditions, and Subrata Chattopadhyay et al.
(2010) used GIS to analyze seasonal variations in air
quality. However, across all these studies, a common gap
remains: the absence of a unified, low-cost, and scalable
system that combines indoor-outdoor pollution data,
personal exposure, and real-time analytics using remote
sensing, ground stations, and GIS tools, along with
standardized indices for inter-regional comparison.
Public demand compelled authorities to implement
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various control measures, leading to noticeable air quality
improvements between 1991 and 2003 (Gupta & Kumar,
2006). During this period, industries contributing to air
pollution relocated to peripheral areas, vehicles adopted
advanced technologies, and low emission fuels were
introduced. However, Mumbai's air quality has since
deteriorated, with PM1o and Suspended Particulate Matter
(SPM) levels exceeding the CPCB's recommended limits,
as reported by the National Environmental Engineering
Research Institute (NEERI, 2013). For residential areas,
the permissible limits for PM3, and SPM are 60 pig/m?3 and
140 pg/m3, respectively. Studies on air pollution in
megacities have further identified high concentrations of
total suspended particles (TSPs) as a primary concern
(Mage et al., 1996). Elevated levels of particulate matter
are widely recognized for their significant adverse effects
on health and the environment (Chhabra et al., 2010;
Kampa & Castanas, 2008; Srivastava & Kumar, 2002;
Zhou et al., 2014; Kristiansson et al., 2015).

STUDY AREA

The study area encompasses 337.49 km?2 in
Maharashtra, covering 23 stations across Navi Mumbai
and parts of the Thane district. It is situated between
longitudes 72.90° to 73.15° East and latitudes 18.90° to
19.30° North. Navi Mumbai, a rapidly urbanizing city,
is highly vulnerable to climate risks, such as heatwaves,
forest fires, and deteriorating air quality due to
urbanization. The 1960s Regional Plan for the Mumbai
Metropolitan Region (MMR) designated large industrial
zones near Parsik Hills and Taloja, adjacent to Navi
Mumbai. These zones host highly polluting industries,
resulting in severe health and environmental challenges.
In 2019, the Maharashtra Pollution Control Board
highlighted a rise in air-borne diseases linked to these
industries. Details of the study area, along with air
quality monitoring stations, are illustrated in Figure 1.
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Figure 1. Study area location map and monitoring stations
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METHODOLOGY

Collection and Pre-processing of Air Quality Data
The data is collected from various ground stations set

up by Central Pollution Control Board (CPCB) and
Maharashtra Pollution Control Board (MPCB). The
locations of the monitoring stations are shown in
Table 1.

Table 1. Air quality monitoring stations

Sr. No. AQM_Stations Latitude | Longitude | Sr. No. AQM_Stations Latitude | Longitude
1 Airoli 19.158 72.98 13 | MPCB Nirmal Bhavan 19.114 73.015
2 Nerul 1ITM 19.02 73.02 14 | Thane Balkun Kolshet 19.23 72.98
3 |Kasar Wadavli 19.26 72.97 15 ;:]ea:]?sesBa'k”m Glaxol 1901 | 72,09
4 Belapur CBD 19.02 73.03 16 | Terrace of Kopari 19.184 72.973
5 Kopripada Vashi 19.08 73.01 17 | CIDCO Kharghar 19.04 73.07
6 E?ﬂ‘;ﬂef;‘;":; 19.21 72.95 18 |MIDC Taloja 1906 | 73.11
7 Sanpada MPCB 19.05 73.01 19 | Naupada 19.19 72.97
8 Sector 2A Kalamboli 19.026 73.1 20  |Nerul MPCB 19.01 73.04
9 Tondare Taloja 19.07 73.13 21 | Vashi Brigade 19.07 72.99
10 Upavan Fort 19.22 72.95 22 Rabale TBIA 19.13 73
11 | Airoli Fire Station 19.151 72.989 23 Nerul D Y Patil 19.046 73.024
12 Nerul STP 19.03 73.02

The collected data from various stations, including
sources, like CPCB and MPCB, was found noisy and
unstructured, requiring pre-processing for analysis. The
dataset includes 24 attributes for a period of 10 years,
with issues, such as null values and misclassified
instances. Using Google Colab and Python libraries, like
Pandas, NumPy, Matplotlib, and Seaborn, the data was
structured, analyzed, and visualized. Pandas handled

tabular data manipulation, NumPy supported numerical
operations, and Matplotlib and Seaborn facilitated trend
visualization. Python's robust ecosystem enabled
efficient processing of 19,629 data points, yielding
meaningful insights through graphs. The graphical
representation of variation of air pollutants is shown in
Figures 2 to 4.
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Figure 2. Variation of SO, with data count
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The graph shown in Figure 2 illustrates the variation the right and is also called a positively skewed curve.
of SO, with data count as a skewed distribution. The central tendency can better be assessed by median
Although it seems to be a normal curve, it is sloping to and average values.
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Figure 3. Variation of NOx with data count

The graph shown in Figure 3 illustrates the variation The central tendency can better be assessed by median
of NOy with data count. The frequency distribution is an and average values.
almost symmetrical normal distribution and bell shaped.
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Figure 4. Variation of PM;o with data count

The graph shown in Figure 4 illustrates the variation air pollutants under study are shown in Figure 5.
of PM3o with data count. This type of distribution is also In Figure 5, it is observed that there is a strong
a bell-shaped asymmetric curve which has a long tail at correlation between SO, and NOy. The relationship
the right and hence can be termed as positively skewed. between sulphur dioxide (SO.) and nitrogen dioxide
However, the curve is flattened between 100 and 200 (NOy) in air pollution can be complex and is influenced
readings on the x axis. Hence, median values can also be by wvarious factors, including emission sources,
a better way of assessing the central tendency of data. atmospheric conditions, and chemical reactions.

The scatter plots showing relationships amongst the
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Figure 5. Scatter plot showing relationships among PM1g, SO, and NOy

The relationship between sulphur dioxide (SO,) and
particulate matter with a diameter of 10 micrometres or
less (PMyo) in air pollution can vary based on several
factors, including emission sources, atmospheric
conditions, and the characteristics of the pollutants.

The R values between PMjo and SO, (0.075) and
between PM1o and NOy (0.266) suggest a negligible and
weak correlation, respectively. This implies that PMio
levels are largely independent of SO, and show only a
weak linear association with NOx.

Spatial Temporal Mapping

GIS 3.16 version has been used to delineate the study
area consisting of 23 station points, where the air quality
monitoring equipment has been placed. The daily
concentrations of the criteria pollutants PMj, NOx and
SO, have been collected from sources, like MPCB
(Maharashtra Pollution Control Board), and CPCB from
23 monitoring stations.

Delineation of the study area(Parts of Navi Mumbai and Thane)

\Z

Collection of PM,,NO, and SO, data (MPCB,CPCB)

A V.4

Mapping of PM,,,NO, and SO, using GIS

\Z

Analysis of maps generated by above steps

\Z

Results and discussion

A V.4

Conclusion

Figure 6. Methodology Flow chart

Mapping of PM1o, NOx, and SOz

The data is analysed for SO,, NOx and particulate
matter (PMio) or Respirable Suspended Particulate
Matter (RSPM). The locations under different class
areas, like industrial, residential, and commercial, were
monitored. Mapping of PMj, which is basically
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Particulate Matter less than 10 micrometers, NO,, as
well as SO, involves some defined steps from data
collection to visualization. After collection of the data,
the data was processed making sure that the data points
include the location (latitude and longitude), data and
PMjo variations. The data was categorized into four
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distinct seasons; namely, pre-monsoon, monsoon, post-
monsoon, and winter, spanning from 2014 to 2023.
Then, the data points were loaded in the GIS software
making sure that the data is in a format compatible with
the software (CSV format). A point layer has been
created utilizing the coordinate data representing the
PM1o monitoring stations.

Spatial Interpolation

As the main aim of this paper is the assessment of
the spatial distribution of PM3g, NOy, and SO,, spatial
interpolation was carried out to estimate the values of a
variable at unsampled locations within an area based on
the values measured at known locations. Essentially, it
interpolates the missing values between observed data
points to generate a seamless surface or map of the
variable throughout the entire area of interest. Three
methods of interpolation have been performed, IDW,
Kriging and Spline and IDW gave better results as
compared to the other two, as the monitoring stations
across the study area are uniformly distributed. The
Inverse Distance Weighted (IDW) model is commonly
used and operates on the realistic assumption that a
point's properties are more closely related to those of
nearby locations than to those farther away (Bartier &
Keller, 1996; Goutham et.al., 2018). The Inverse
Distance Weighting (IDW) method provides accurate
spatial interpolation results due to its assumption that
nearby points have greater influence on the interpolated
values than distant ones, aligning with Tobler’s First
Law of Geography. IDW assigns weights inversely
proportional to distance, allowing for localized
precision, especially in densely sampled datasets. Its
deterministic nature avoids overfitting and ensures
smooth surface generation, making it ideal for pollutant
concentration mapping. Moreover, IDW does not
require assumptions about data distribution, unlike
geostatistical methods, making it suitable for
heterogeneous urban environments where air quality
data often exhibits non-normal spatial patterns.

The IDW method can be explained as in Equation (1)
(Burrough & McDonell, 1998).
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This method is widely utilized in local interpolation
technique that typically utilizes a moving window to
determine the area of influence. In the context of vector-
based processing, a circular moving window is
frequently employed for the analysis of point data. This
approach assumes that the impact of individual input
points on the interpolated value at the centre of the
window diminishes as the distance increases, in
accordance with an inverse power relationship. More
specifically, the impact is inversely related to a certain
exponent (p) of the distance from the centre, as indicated
in the provided formula. The estimated value at an
unsampled site is denoted by z(u0), the known data
points are denoted by z(ui), the distance amongst each
data point and the unsampled location is denoted by dij,
and p is a parameter that is usually set to 2. The weights
are, in general, inversely proportional to the square of
distance from unsampled site to data point. The larger
the value of p, the greater the influence of nearer points.
The denominator ensures that the weights sum to 1,
allowing a normalized interpolation result.

z(u0) = )

RESULTS AND DISCUSSION

As discussed in the methodology section, the spatio-
temporal mapping of the point pollutant concentration is
carried out and the results are discussed in the current
section.

Spatio-temporal Mapping of PM1o

Season wise maps were generated using GIS from
2014 to 2023 showing the variations of PMygin the pre-
monsoon, monsoon, post-monsoon and winter seasons,
respectively. The six PMo concentrations are classified
as: Good, Satisfactory, Moderately polluted, Poor, Very
Poor, and Severe, and each of them is depicted by a
distinct colour. Health breakpoints, or favourable
concentration values of air pollutants, are used to
determine the likely health effects of each of these
categories. The different categories are represented by 6
different colours as shown in Table 2.
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Table 2. Concentrations of PM1o category-wise based on national guidelines (India) as
per the Central Pollution Control Board (CPCB), 2023

Colour Category Concentration of PMuo (Lg/m3)
51-100 Satisfactory 51-100
101-250 Moderately poolluted 101-250
251-350 Poor 251-350
‘ Very Poor 351-430
430+ ‘ Severe 430+
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Figure 7. Maximum PMjyo distribution in the studied zone
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Area (km? affected by PMjp in Premonsoon season from 2014 to 2023
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Figure 8. Categorical distribution of area affected by maximum PMyg
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PMyg levels across different periods, and Figure 8 shows
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the categorical distribution of PMj, affected areas.
During the pre-monsoon season from 2014 to 2023,
PMo concentrations in Navi Mumbai exhibited varying
pollution levels. Most of the area fell within the
"Moderately Polluted" category (101-250 pg/m3). The
"Good" air quality category (0-50 pg/m?3) covered 0.52
km? in 2014, expanded to 2.10 km2 by 2020, but
declined to 1.26 km2 in 2021. The "Satisfactory"
category (51-100 pg/ms3) spanned 2.61 km? in 2014,
peaked at 224.57 km? in 2019, and dropped to 7.40 km?
in 2023. The "Moderately Polluted" category fluctuated,
starting at 38.67 km? in 2014, peaking at 328.32 km? in
2018, and covering 226.69 km2 in 2023. The "Poor"
category (251-350 pg/m3) covered 104.44 kmz in 2014,
fluctuated over the years, and reached 95.14 km? in
2023. The "Very Poor" category (351-430 pg/m?3) also
showed variations, from 128.34 km? in 2014 to 8.27 km?
in 2023. Meanwhile, the "Severe" category (430+
pg/m?3) declined significantly from 62.74 km2 in 2014 to
2.16 km2 by 2022.

During the monsoon season from 2014 to 2023,
PM3g concentrations in Navi Mumbai were primarily in
the "Moderately Polluted” category (101-250 pg/ms3).
The "Good" air quality category (0-50 pg/m3) spanned
0.45 km? in 2017, peaked at 18.37 km? in 2020, and
decreased to 0.22 km? by 2021. The "Satisfactory"
category (51-100 pg/m3) fluctuated, covering 5.90 km?
in 2014, reaching a peak of 293.97 km? in 2020, and
reducing to 13.34 km2 in 2023. The "Moderately
Polluted" category remained dominant, covering 325.77
km? in 2014 and 258.90 km2 in 2023, with some
variation over the years. The "Poor" category (251-350
pg/md) increased from 5.83 km?2 in 2014 to 36.65 km2in
2023. The "Very Poor" category (351-430 pg/m3) first
appeared in 2021, covering 2.67 km2, and expanded to
14.29 km? by 2023. Similarly, the "Severe" category
(430+ pg/m3) emerged in 2021, covering 4.84 km?, and
grew to 14.10 km2 in 2023.

During the post-monsoon season from 2014 to 2023,
PM3, concentrations in Navi Mumbai predominantly fell
within the "Moderately Polluted" category (101-250
pg/m3). The "Good™ air quality category (0-50 pig/m3) was
minimal, covering only 0.01 km? in 2014 and increasing to
1.83 km? in 2020. The "Satisfactory" category (51-100
pg/m3) fluctuated, starting at 2.54 kmz? in 2014, peaking at
227.68 km? in 2019, and decreasing to 12.88 kmz by 2023.
The "Moderately Polluted” category consistently
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dominated, ranging from 324.35 kmzin 2014 to 290.42 km?
in 2023. The "Poor" category (251-350 pg/m3) showed
significant variation, covering 10.60 km2 in 2014, peaking
at 335.82 kmz in 2016, and declining to 33.67 km? in 2023.
The "Very Poor" category (351-430 pg/m?) first appeared
in 2015, covering 7.70 km2, and dropped to 0.52 km? in
2023. No "Severe" concentrations (430+ pg/m3) were
recorded during the period.

During the winter season from 2014 to 2023, PMyo
concentrations in Navi Mumbai were predominantly in
the "Moderately Polluted” category (101-250 pg/ms3).
The "Good" air quality category (0-50 pg/md) was
scarce, covering only 0.87 km? in 2020. The
"Satisfactory" category (51-100 pg/ms) fluctuated,
spanning 2.54 kmz2 in 2014, peaking at 135.48 km? in
2019, and decreasing to 4.47 km2 in 2023. The
"Moderately Polluted" category consistently dominated,
increasing from 7.04 km?2 in 2014 to 198.93 km? in 2023.
The "Poor" category (251-350 pg/m?) showed some
variability, covering 128.97 km2in 2014 and 122.91 km?
in 2023. The "Very Poor" category (351-430 pg/m?)
peaked at 180.23 km?2 in 2014 and declined to 11.19 km?
in 2023. The "Severe" category (430+ pg/m3) was
recorded at 21.25 km? in 2014 and decreased
significantly to 1.71 kmz2 in 2023.

From 2014 to 2023, PM;, concentrations in Navi
Mumbai exhibited seasonal and spatial variations. Across
all seasons, the majority of the area consistently fell
within the "Moderately Polluted” category (101-250
pg/m3), with varying extents of "Good," "Satisfactory,"
"Poor," "Very Poor," and "Severe" pollution levels. The
"Good" and "Satisfactory" air quality categories appeared
sporadically, but generally declined over time, reflecting
deteriorating air quality. The "Poor" and "Very Poor"
categories showed significant variability, peaking in
certain years without a consistent downward trend.
Although less extensive, the "Severe" category persisted,
particularly during the winter and pre-monsoon seasons,
highlighting periods of heightened pollution.

Spatio-temporal Mapping of NOx

The six classes of NOy concentration are classified
as: Good, Satisfactory, Moderately polluted, Poor, Very
Poor, and Severe, and each of them is depicted by a
distinct colour. The different categories are represented
by 6 different colours, as shown in the Table 3.
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Table 3. Concentrations of NOx category-wise based on national guidelines
(India) as per the Central Pollution Control Board (CPCB), 2023

Colour Category Concentration of NOx(pg/m3)
41-80 Satisfactory 41-80
81-180 Moderately Polluted 81-180
181-280 Poor 181-280
Very Poor 281-400
400+ Severe 400+
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Figure 9. Maximum NOydistribution in the studied zone
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Area (k) affected by N0y in Premonsoon seasonfrom 2014 to 2023
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Figure 9 illustrates seasonal variations in maximum NOy levels across different periods, while Figure 10
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displays the categorical distribution of areas affected by
NOy. During the pre-monsoon season from 2017 to 2019,
the majority of the area (over 300 km?) consistently fell
within the 0-40 pg/m® range of good category. This
indicates better air quality during these years compared to
other periods. From 2020 to 2023, there is a notable
increase in the areas falling under higher NOy
concentration ranging from 81-180 pg/m?; i.e. moderately
polluted category which increased significantly, peaking
at 93.07 kmz in 2021 and 92.89 km2 in 2022. Areas under
the 181-280 pug/m? grew in recent years, with 25.03 km?
in 2021 and 24.78 km? in 2023. Under the range 281-400
pug/m* which is very poor category, small areas with
extremely high concentrations (e.g. 3.69 km2 in 2022)
indicated localized pollution. During the years 2014-
2016, the distribution of NOy concentrations shows a mix
of ranges, with significant areas in both 0-40 pg/m?* and
41-80 pg/m*® concentrations falling under good to
satisfactory categories.

The graph illustrates the year-wise area (in square
kilometers) affected by NOx concentrations during the
monsoon season from 2014 to 2023. Good category (0—
40 km?2 range) dominates across all years, indicating that
most areas experience low NOy concentrations.
Occasional spikes are visible in higher concentrations
ranging from moderately polluted to poor category. In
the years 2014 and 2015, a noticeable area of 333 km?
contributed to good category and 337 km? area
contributed to satisfactory category, respectively. In the
year 2017, there was an increase in the area affected by
moderately polluted category with 163 km? area
observed under moderately polluted category. A gradual
increase in moderately polluted category was observed

from 2020 to 2022.The year 2023 marked the reduction
in moderate and high concentrations compared to 2022,
with most areas falling back into the 0-40 km? range.

In the post-monsoon season, it is observed that the
good to satisfactory category dominates the study area
throughout the study period of 10 years. Higher
concentration ranges of moderately polluted to poor
category appear periodically, with a few spikes in
specific years. Substantial increase in areas with
moderate to high NOx concentrations, with 291 km? and
22.47 kmz2, respectively, is seen in the year 2021,
showing a significant growth. In 2022 and 2023, a
moderate reduction in higher concentrations compared
to 2021 is seen, but with residual areas still affected in
yellow and orange ranges.

In the winter season, it is observed that majority of
the area is dominated by satisfactory category indicated
by light green colour. From 2014 to 2019, the affected
areas in the good and satisfactory categories remain
constantly high round about 300-340 km2, Starting in
2020, there is a noticeable increase in the affected areas
within the moderate concentration range. For example,
267kmz2 in 2020,221 km? in 2021,174 km?2 in 2022 and
229km2 in 2023. Higher concentrations of NOy begin to
emerge after 2020. 2022 and 2023; see small
contributions in the highest concentration ranges.

Spatio-temporal Mapping of SO2

The six classes of SO, concentration are classified
as: Good, Satisfactory, moderately polluted, Poor, Very
Poor, and Severe and each of them is depicted by a
distinct colour. The different categories are represented
by 6 different colours, as shown in the Table 4.

Table 4. Concentrations of SO2 category-wise based on national guidelines
(India) as per the Central Pollution Control Board (CPCB), 2023

Colour Category Concentration SO2 pg/m3)
- Good 0-40
41-80 Satisfactory 41-80
81-380 Moderately polluted 81-380
381-800 Poor 381-800
Very Poor 801-1600
1600+ Severe 1600+
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Figure 11. Maximum SO distribution in the studied zone
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Figure 12. Categorical distribution of area affected by SO,
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Figure 11 highlights seasonal variations in maximum
SO, levels across different periods, whereas Figure 12
shows the categorical distribution of SO, affected areas.
The 0-40 km? concentration range of good category
consistently dominates, indicating that most areas have
low SO, concentrations across all years. From 2014 to
2017, SO; levels in this category remained stable with
minimal variation. However, 2018 saw a noticeable drop
in the 0-40 km? range, followed by a gradual recovery
until 2020. Another decline occurred in 2022, with slight
increases in higher concentration ranges, such as 41-80
km? and 81-380 km?, reflecting higher pollution levels.
By 2023, the situation improved slightly as the area
affected by the 0-40 km?2 category increased again. The
81-380 km? category occasionally appears, but remains
minor, while severe pollution ranges (poor to severe) are
negligible or absent, indicating that severe SO, pollution
is rare. Year specific anomalies include the 2018
reduction in low concentration areas, potentially linked
to specific pollution events or meteorological factors,
and variability in 2022 and 2023, possibly due to
changes in emission sources or environmental policies.

In monsoon, the 0-40 km? concentration range (good
category) overwhelmingly dominates throughout the
years, indicating that most areas experience low SO;
concentrations during the monsoon season. From 2014
to 2017, the area affected by this category remains
steady, consistently exceeding 330 km2 and reflecting
very low SO, levels. A decline in the good category
occurs in 2018, accompanied by slight increases in
higher categories (satisfactory to moderately polluted),
likely due to temporary pollution events or weather
anomalies. In 2020 and 2021, the good category range
experiences a significant drop, with increased areas in
satisfactory to moderately polluted categories, reflecting
higher pollution levels. However, the good category
recovers in 2022 and 2023, with minimal areas affected
by higher concentrations. Severe SO, concentrations
representing poor category are nearly absent, indicating
no extreme pollution levels. The dominance of low SO,
levels is consistent with the cleansing effects of
monsoon rains, which reduce air pollution by washing
out pollutants. Year-specific variations, such as
increased pollution in 2018, 2020, and 2021, are likely
due to industrial or environmental factors, while 2022
and 2023 show a recovery in air quality, with the 0-40
kmz2 category returning to near-peak levels.

In post-monsoon season, the good concentration
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category in the range of 0-40 pg/m® consistently
dominates most years, indicating that the majority of the
area experiences low SO, concentrations during this
particular season. From 2014 to 2018, the area under this
category remains high (above 300 km?), with minimal
contributions from higher concentration categories. In
2020, the area coming under good category declines to
242.52 kmz, accompanied by slight increases in the
satisfactory and moderately polluted categories,
reflecting a temporary rise in SO, pollution. The
satisfactory category sees a significant increase in 2022,
reaching 277.51 kmz, indicating a notable spread of
moderate SO, concentrations. By 2023, the good
category rebounds to 226.84 kmz2, although higher
categories remain prominent. The moderately polluted
category sporadically appears, particularly in 2020,
2022, and 2023, reflecting pollution spikes, while poor
SO, concentrations (381+) remain negligible, indicating
the absence of extreme pollution levels. Post-monsoon
weather patterns, including reduced rainfall and stagnant
atmospheric conditions, may contribute to localized
pollution spikes. Year-specific observations highlight
predominantly good air quality from 2014 to 2018,
temporary increases in moderate pollution in 2020, a
significant spread of moderate concentrations in 2022,
and some recovery in 2023, with higher categories being
still notable. temporary increases in moderate pollution
in 2020, a significant spread of moderate concentrations
in 2022, and some recovery in 2023.

The majority of the area across all years lies in the
lowest concentration range, indicating good category,
represented by green bars, indicating low SO, pollution
levels. However, occasional peaks in higher
concentration ranges are observed, such as in 2021,
where substantial areas fall within the good and
satisfactory ranges, compared to other years. Some
years, like 2022 and 2023, also show slight increases in
areas affected by the satisfactory category range.
Overall, the total area affected by SO, remains relatively
stable, with minor fluctuations. The trend shows
occasional spikes in moderately polluted category, but
no consistent increasing or decreasing pattern over the
years. This suggests that while SO; pollution is largely
under control, specific years, such as 2021 and 2023,
might have experienced isolated events leading to
increased concentrations.
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CONCLUSIONS

This study presents a comprehensive spatio-
temporal evaluation of PMy levels across Navi Mumbai
and Thane from 2014 to 2023, underscoring pronounced
seasonal fluctuations and long-term shifts in air quality.
In 2014, the pre-monsoon period saw 87% of the region
suffering from poor to severe air quality, escalating to
98% during winter. Although municipal interventions
brought some improvements by 2017, about 34% of the
region continued to face unhealthy air conditions. A
remarkable improvement in air quality was recorded
during the COVID-19 lockdowns (2019-2020), when
reduced human activity led to 66% and 12% of the total
region of the study area registering satisfactory air
quality. Nevertheless, this progress was short-lived.
Pollution levels spiked in 2018, 2020, and 2021, largely
due to rapid urban development, growing vehicular
usage, ongoing construction, and the absence of rigorous
enforcement of environmental regulations. The
resumption of industrial activity post-lockdown, paired
with increased private transport reliance, further
exacerbated pollution levels. Compounding the issue
occurred by meteorological conditions, like low wind
speeds and temperature inversions, which hindered
pollutant dispersion. By winter 2022, 68.5% of the study
area showed poor to severe air quality, though this figure
improved to 40% in 2023, indicating a slow, but
positive, trend. Meanwhile, NO levels remained within
safe limits until 2019, but showed a notable rise
afterward, especially around industrial areas. SO levels
generally remained low, with sporadic increases post-
2020 in selected zones.

The study highlights the value of continuous air
quality monitoring through real-time sensors,
integration of satellite imagery, and machine learning-
based forecasting for better prediction and management.
Moving forward, policy frameworks must emphasize
tighter emission norms, seasonal regulations, and
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